[아두이노] 아두이노 주차장 출입구 차량차단장치

IOT/아두이노|2019. 7. 25. 09:00

[아두이노] 아두이노 주차장 출입구 차량차단장치



일상을 주제로 주변에 상황을 아두이노로 표현하는 실험을 계속 진행 중입니다. 오늘은 아파트나 일반 주차장 또는 특정 건물에 차량을 진입하는 입구 쪽에 차량 차단장치가 설치되어 있는 곳들이 많습니다. 이 차량 차단장치를 아두이노적 시각으로 한번 실험을 해보도록 하겠습니다.

1. 주차장 출입구 차량차단장치 설정



위와 같이 상황은 근접감지센서를 다른 것을 이용해야 하는데 실험에서는 초음파센서를 이용하여 근접감지를 하도록 상황을 만들고 차량이 출입구 쪽으로 다가오면 근접감지가 되고 그 감지되었을 때 차량차단막기 올라가게 됩니다. 차량차단막이 내려져 있을 때는 Red LED에 불이 들어와 있는 상태이고 차단막이 올라가면 Green LED에 불이 들어오고 차량이 통과된다는 설정입니다.

2. 아두이노 주차장 출입구 차량차단장치 회로도


  • 준비물 : 적색 LED 1개, 녹색 LED 1개, 저항 220옴 2개, 초음파센서, Servo모터, 아두이노우노
  • 내용 : 8,9번핀은 LED에 연결하고 초음파센서핀은 7번, Servo모터은 6번 핀에 연결하시오.

실제 초음파센서는 4핀이지만 가상시뮬레이터에서는 3핀 초음파센서로 7번핀으로 Trig, Echo 역활을 수행합니다.


회로도는 복잡하지 않죠. 위 회로도는 각 역활은 아래 그림으로 이해하시면 되겠습니다.


3. 코딩



사전학습으로 Servo모터와 초음파센서에 대해서 한번 읽고 오세요. 사용하실 수 있는 분들은 그냥 넘어가셔도 됩니다.

[설계]

  • 초기신호등은 적색LED에 불이 들어온 상태가 되면 차량 정지를 의미한다.
  • 초음파센서로 근접거리가 일정거리이하가 되면 차량감지로 간주한다.
  • 차량감지가 되면 차량차단막이 올라간다는 느낌으로 Servo모터를 90도 회전한다.
  • Servo모터가 90도 회전이 되었다가 간주한 시점에 "적색->녹색" 등으로 변환시킨다.
  • 차량은 통과하는데 통과가 완료되었다고 생각되는 감지 시간을 기준으로 차단만은 일정시간 유지한다.
  • 마지막 차량 감지된 시간을 기준으로 일정시간 차단막이 올라가 있다가 차량이 통과했다고 생각 되는 시간에 차단막이 내려온다는 느낌으로 Servo모터를 0도로 회전시킨다.
  • 0도 회전을 할 때 "녹색->적색"등으로 변환시킨다.(정지)

차량감지

거리를 측정은 위 초음파센서 post의 거리 계산를 함수로 거리값을 구하게 됩니다.

int CalDistance (int Pin){  //초음파센서(3핀) 예제를 그대로 외부함수로 빼냄
  pinMode(Pin,OUTPUT); //출력모드로  사용
  digitalWrite(Pin, LOW); 
  delayMicroseconds(2); 
  digitalWrite(Pin,HIGH); 
  delayMicroseconds(10); 
  digitalWrite(Pin,LOW);   
  
  pinMode(Pin,INPUT);    //입력모드로 사용
  int duration = pulseIn(Pin, HIGH);  
  int distance = duration / 57.5;  //가상시뮬레이션의 오차율을 줄이기 위해 이걸로 테스트 함.
  return distance; //거리값 리턴
}

거리를 구하게 되면 차량이 감지판정은 if문으로 만든다.

if(m_distance<50){ //50cm미터 미만일 때 차량 감지로 간주             
  차량감지 후 동작;
}

차량이 감지 후 동작은

  if(m_distance<50){   //50cm미만일 때 차단막 올리기 동작       
    if(state==false){  //초기값은 state=false상태로 처음에는 이 if조건문이 무조건 참이 된다.
      servo.write(90); //감지 되었기 때문에 Servo모터 90도 회전
      delay(2000);   //2초 동안 강제로 Servo모터가 회전하도록 설정
      state=true;     //다시 이 if조건문을 수행할 필요가 없기 때문에 state=true 설정     
      digitalWrite(rPin, LOW); //차단막이 올라갔으니 적색등 끄기
      digitalWrite(gPin, HIGH); //차량 통행하도록 녹색등 켜기
    }
    timeVal=millis(); //마지막 차량 감지된 시간을 저장함
  }  
  if(state==true){ //차단막 내리기 동작
    if(millis()-timeVal>=2000){ //마지막 차량 감지된 시간을 기준으로 차단막 유지시간이 지났는가 체크
      servo.write(0); //차단막 내리기
      state=false; //차단막이 내려졌으니 이 if조건문을 수행할 필요가 없기 때문에 state=fasle 설정
      digitalWrite(gPin, LOW); //차단막이 내려오니깐 녹색등은 끄기
      digitalWrite(rPin, HIGH); //차량 정지하도록 적색등 켜기
    }    
  } 

주석을 일일히 다 달아놓았으니깐 주석을 살펴보시기 바랍니다. 왜! if문을 state의 상태값으로 두가진 차단막 올리기/내리기 동작을 구분하였을 까요. 두 동작을 구분을 지어서 동작하게 하기 위해서요. 자세히 보시면 만약 차단막이 올라간 상태에서 계속 현재 차량이 감지되거나 계속 새로운 차량이 들어올 경우는 계속 차단막 올리는 명령을 내려야 합니다. 이미 올라갔는데 구지 반복 명령을 내릴 필요는 없이 현상태만 유지하면 됩니다. 그래서 if문으로 올라갔으면 내려가는 상황만 체크하면 되지 올라가는 상황을 동작할 필요없는 없습니다. 여기서, timeVal은 올라가는 상황 코딩 안에 다 넣지 않고 밖에다 빼낸 이유는 계속 초음파센서로 감지했을 때 마지막으로 감지된 시간을 기준으로 차단막의 유지시간을 결정하게 하기 위해서 입니다.

종합해보면,

#include <Servo.h>

Servo servo;
const byte servoPin = 6;
const byte pingPin = 7;
const byte gPin = 8;
const byte rPin = 9;
int m_distance=0;
boolean state = false;
unsigned long timeVal=0;

void setup()
{
  pinMode(gPin, OUTPUT);
  pinMode(rPin, OUTPUT);  

  servo.attach(servoPin); 
  servo.write(0);
  delay(1000);
  
  digitalWrite(rPin, HIGH);
}

void loop()
{
  m_distance=CalDistance(7);  //초음파센서로 거리계산함수  
  if(m_distance<50){            
    if(state==false){
      servo.write(90);
      delay(2000); 
      state=true;          
      digitalWrite(rPin, LOW);
      digitalWrite(gPin, HIGH);
    }
    timeVal=millis();
  }  
  if(state==true){
    if(millis()-timeVal>=2000){
      servo.write(0);
      state=false;
      digitalWrite(gPin, LOW);
      digitalWrite(rPin, HIGH);
    }    
  }  
}

int CalDistance (int Pin){  //초음파센서(3핀) 예제를 그대로 외부함수로 빼냄
  pinMode(Pin,OUTPUT); //출력모드로  사용
  digitalWrite(Pin, LOW); 
  delayMicroseconds(2); 
  digitalWrite(Pin,HIGH); 
  delayMicroseconds(10); 
  digitalWrite(Pin,LOW);   
  
  pinMode(Pin,INPUT);    //입력모드로 사용
  int duration = pulseIn(Pin, HIGH);  
  int distance = duration / 57.5;  //가상시뮬레이션의 오차율을 줄이기 위해 이걸로 테스트 함.
  return distance; //거리값 리턴
}

loop()함수 내 로직만 설계에 맞게 코딩만 하면 오늘 코딩의 전부입니다. loop()함수 내 코딩은 몇줄 안되지만 설계의 내용을 다 포함되어 있네요. 글보다 코딩이 더 짧은 케이스네요.

4. 결과


가상시뮬레이터에서 결과입니다.


5. 실제 테스트


정상적으로 동작하는지 실제로 구현해 봤네요.

1) 아두이노 주차장 출입구 차량차단장치 회로도


4핀짜리 초음파센서로 대충 실제 제작 모습과 동일하게 디자인 했네요.


위 회로도를 실제 배치하고 선을 연결하니깐 아래와 같은 모습으로 좀 지져분하게 되었습니다.


2) 코딩



위의 가상시뮬레이터 코딩에서 newPing 라이브러리를 사용해서 그부분만 수정했습니다. 그리고 초음파센서가 4핀이니 trig, echo 핀을 정확하게 지정해 줘야 합니다.

코딩은 가상시뮬레이터 소스에서 newPing 라이브러리를 이용한 방식과 4핀 초음파센서 부분만 수정하면 됩니다.
그리고 주의할 점은 실제 초음파센서에서는 거리 측정값이 오류가 발생합니다. 이 오류를 해결하기 위해서 초음파센서값에 대한 평균값을 구해서 오류값을 막을 수 도 있지만 간단하게 오류값을 무시하는 방식을 취했습니다.

  if(m_distance>오류값 && m_distance<감지거리){       
      동작;
  }

제가 쓰는 초음파센서는 가끔 0과 10이하의 값들이 찍히네요. 그래서 실험에서는 10이상의 값들만 거리 판정을 내렸네요. 만약 결과가 정상적으로 나오지 않는다면 거리측정값을 시리얼통신을 통해 시리얼모니터로 그 결과를 찍어보시고 여러분들이 원하는 값으로 수정해 주시면 됩니다.

수정해보면,

#include <NewPing.h>
#include <Servo.h>

Servo servo;
const byte servoPin = 7; 
const byte gPin = 8;
const byte rPin = 9;
int m_distance=0; //거리
boolean state = false; //차단막 제어를 위한 상태값
unsigned long timeVal=0;

NewPing sonar(6, 5, 200); // (Trig, Echo. 거리제한)

void setup() {
  
  Serial.begin(9600);
  pinMode(gPin, OUTPUT);
  pinMode(rPin, OUTPUT);  

  servo.attach(servoPin); 
  servo.write(0);
  delay(1000);
  
  digitalWrite(rPin, HIGH);
}

void loop() {  
  delay(50);            
  m_distance=sonar.ping_cm();  //초음파센서로 거리계산함수  
  Serial.println(m_distance);
  if(m_distance>10 && m_distance<20){  //20cm는 의미가 있는 것은 아닙니다.
    if(state==false){
      servo.write(90);
      delay(2000); 
      state=true;          
      digitalWrite(rPin, LOW);
      digitalWrite(gPin, HIGH);      
    }
    timeVal=millis();
  }  
  if(state==true){
    if(millis()-timeVal>=3000){
      servo.write(0);
      state=false;
      digitalWrite(gPin, LOW);
      digitalWrite(rPin, HIGH);
    }    
  } 
}

3) 결과


10cm이하는 차량감지로 판정을 하지 않습니다. 그리고 20cm미만일 때 차량감지 파전을 내렸네요. 스마트폰으로 촬영하기 위해서 거리값을 최대한 줄여서 실험 했네요.


마무리


최근에 계속 아두이노적 시각으로 주변환경을 관찰하면서 하나씩 post 주제를 선정하고 있네요. 지하주차장에 차량차단막이 되어 있는 곳을 들어 갈 때 차량을 감지하고 차단막이 올라가면서 옆에 신호등이 "적색->녹색" 등으로 바뀌는 상황을 보면서 "아! 이걸 주제로 표현해봐야지!"하고 이렇게 실험하게 되었네요.

여러분들도 한번 주변환경을 관찰하고 저처럼 실험을 해보세요.


댓글()

[아두이노] 지그재그 주행 패턴 아두이노 RC카 응용

IOT/아두이노|2019. 5. 31. 09:00

[아두이노] 지그재그 주행 패턴 아두이노 RC카 응용 



지난 시간까지 해서 아두이노 기본 키보드/마우스 동작 명령을 실험을 해보았습니다. 오늘은 아두이노 IDE의 USB 예제에서 "KeyboardReprogram" 소스가 있는데 매크로 키보드 제어 예제로 딱 좋을 것 같아서 소개를 하도록 하겠습니다. 아두이노를 이용하여 PC에서 수행 할 명령을 기록해 놓았다가 기록 된 순서대로 명령을 내릴 수 있습니다. 이 원리를 이용하면 상상력에 따라 다양한 오토 매크로 프로그램을 만들 수 있습니다.

1. 지그재그 주행 패턴 동작 원리


아두이노 RC카가 위 그림처럼 주행 패턴을 만든다면 일종의 로봇청소기와 같은 주행을 만들 수 있겠죠. 이 주행은 과연 어떻게 이뤄질까요.

첫줄은 과연 어떻게 주행 할까요. 위 그림에서 한 칸당 1초 주행이라면 총 6초(전체이동시간)동안 주행하면 첫줄 주행이 끝나겠죠.

motor1.run(FORWARD);
motor2.run(FORWARD);
delay(전체이동시간);

첫줄에서 두번째 줄로 넘어갈려면 90도 회전 후 0.2초 이동 후 다시 같은 방향으로 90도 회전합니다.

위 그림과 같은 회전 모습을 보여야 겠죠.


motor1.run(FORWARD);
motor2.run(BACKWARD);
delay(90도우회전시간);
motor1.run(FORWARD);
motor2.run(FORWARD);
delay(다음라인이동시간);
motor1.run(FORWARD);
motor2.run(BACKWARD);
delay(90도우회전시간);


두번째 줄에서 세번째 줄로 넘어갈려면 위 코딩에서 반대 방향으로 90도 회전 후 0.2초 이동 후 다시 같은 방향으로 90도 회전합니다.

motor1.run(BACKWARD);
motor2.run(FORWARD);
delay(90도좌회전시간);
motor1.run(FORWARD);
motor2.run(FORWARD);
delay(다음라인이동시간);
motor1.run(BACKWARD);
motor2.run(FORWARD);
delay(90도좌회전시간);

종합해 보면,

//홀수라인 정주행
motor1.run(FORWARD);
motor2.run(FORWARD);
delay(전체이동시간);

//짝수다음라인으로 이동
motor1.run(FORWARD);
motor2.run(BACKWARD);
delay(90도우회전시간);
motor1.run(FORWARD);
motor2.run(FORWARD);
delay(다음라인이동시간);
motor1.run(FORWARD);
motor2.run(BACKWARD);
delay(90도우회전시간);

//짝수라인 역주행
motor1.run(FORWARD);
motor2.run(FORWARD);
delay(전체이동시간);

//홀수라인으로 이동
motor1.run(BACKWARD);
motor2.run(FORWARD);
delay(90도좌회전시간);
motor1.run(FORWARD);
motor2.run(FORWARD);
delay(다음라인이동시간);
motor1.run(BACKWARD);
motor2.run(FORWARD);
delay(90도좌회전시간);

이렇게 해서, 주행 하면 되겠죠.

2. 지그재그 주행 패턴 만들기

id movePattern(){
     state=!state; //방향전환상태값

     if(state==true){
       motor1.run(FORWARD);
       motor2.run(BACKWARD);
       delay(90도우회전시간);
       motor1.run(FORWARD);
       motor2.run(FORWARD);
       delay(다음라인이동시간);
       motor1.run(FORWARD);
       motor2.run(BACKWARD);
       delay(90도우회전시간);
     }
     else{
       motor1.run(BACKWARD);
       motor2.run(FORWARD);
       delay(90도좌회전시간);
       motor1.run(FORWARD);
       motor2.run(FORWARD);
       delay(다음라인이동시간);
       motor1.run(BACKWARD);
       motor2.run(FORWARD);
       delay(90도좌회전시간);
     }            
     motor1.run(FORWARD);
     motor2.run(FORWARD);
}

위 코딩을 보면 if문으로

state=!state; //방향전환상태값
if(state==true){
  짝수라인으로 이동;
}
else{
  홀수라인으로 이동;
}
전진: 

state 값을 다음 라인으로 이동할 때 마다 반전시켜서 홀수/짝수 라인을 교대로 방향이 바뀌게 if문으로 제어할 수 있겠죠.

2. 지그재그 주행


위 그림처럼 주행을 하게 하려면 어떻게 코딩해야 할까요.

아래 그림과 같이 상황이 주어질 경우를 살펴보겠습니다. 정해진 구간이 1~6칸까지로 주행을 하게 된다고 가정해 봅시다.

1에서 5까지 갔다가 다음라인에서 3까지 갔다가 다시 다음라인에서 6까지 이동해야 합니다. 이 주행을 하기 위해서 각 진행방향에 대한 남은 주행 거리를 계산해 내야 합니다. 주행을 계산하는 방법이 떠오른 것이 대충 3가지 종류가 되는데 일일히 다 설명하자니 너무 post가 길어질 것 같아서 제일 맘에 드는 방법 중 하나를 소개할까 합니다.

장애물 발견시 다음 라인 주행을 위한 시간을 구하는 식 :

[남은 주행거리 시간]
timetemp = 전체주행구간 - (현재시간-이전시간);
timetemp = maxTime - (millis() - timeVal);

[주행 시작위치시간 가정]
timeVal = 현재시간-주행거리 시간;

timeVal = millis()-timetemp;


주행 시작위치시간은 millis()함수로 현재 시간값을 기준으로 이전 남은주행거리 시간값을 빼주게 되면 이 남은주행거리 시간이 주행을 한걸로 간주하는 시간값으로 만들 수 있습니다. 설명이 좀 그런데 쉽게 숫자로 설명드리면 다음과 같습니다.

6칸을 6초로 6000이라고 하면 장애물 위치 millis()값이 5000이 될때 방향전환을 통해 짝수라인으로 이동하겠죠. 남은 주행거리 시간은 1000입니다. 이 1000 값을 millis()함수로 현재시간에서 1000을 빼주면 1000 동안 주행 한걸로 간주할 수 있게 됩니다. 그러면 1000만큼 주행한거니 남은 주행거리 시간은 5000이 됩니다. 어떤 의미인지 아시겠지요.

if(장애물감지){
  int timetemp = maxTime - (millis() - timeVal);
    주행방향전환패턴;
  timeVal = millis()-timetemp;
}

이렇게 해서 timeVal값은 이전시간변수이지만 위 식에 의해서 이전 남은 주행거리 시간값을 빼줌으로써 현재라인에서는 그 빼준 시간값만큼 주행한 걸로 간주하게 됩니다.

4. 종합 코딩


maxTime =>주행 구간거리
timeVal  => 이전시간

if(장애물감지){
  int timetemp = maxTime - (millis() - timeVal);
    주행방향전환패턴;
  timeVal = millis()-timetemp;
}
if(millis() - timeVal >= maxTime){   
    주행방햔전환패턴;
    timeVal = millis();
}

대충 위와 같은 과정을 거치게 됩니다. 전방에 장애물을 감지해야 하기 때문에 초음파센서로 장애물 감지하게 되면 다음과 같이 코딩을 완성할 수 있게 됩니다.

void loop() {
  delay(50);
  int distance = sonar.ping_cm();

  //장애물 감지
  if(distance>0 && distance<10){
     int timetemp = maxTime - (millis() - timeVal);
     movePattern();
     timeVal = millis()-timetemp;
  }
  else if(millis() - timeVal > maxTime){
    movePattern();
    timeVal = millis();
  }
}

전체소스를 종합해보면,

#include <AFMotor.h>
#include <NewPing.h>

AF_DCMotor motor1(3);
AF_DCMotor motor2(4);

const int TRIG = A4;
const int ECHO = A5;
const int MAX_DISTANCE = 100;
NewPing sonar(TRIG, ECHO, MAX_DISTANCE);

int speed = 200;
int maxTime = 5000; //주행거리
boolean state = false; //주행방향전환
unsigned long timeVal = 0; //이전시간값

void setup() {
//  Serial.begin(9600);
  motor1.setSpeed(speed);
  motor2.setSpeed(speed);
  motor1.run(RELEASE);
  motor2.run(RELEASE);
  delay(maxTime);

  //Start
  motor1.run(FORWARD);
  motor2.run(FORWARD);
}

void loop() {
  delay(50);
  int distance = sonar.ping_cm();

  //장애물 감지
  if(distance>0 && distance<10){
     int timetemp = maxTime - (millis() - timeVal);
     movePattern();
     timeVal = millis()-timetemp;
  }
  else if(millis() - timeVal > maxTime){
    movePattern();
    timeVal = millis();
  }
}

void movePattern(){
     state=!state; //방향전환상태값

     if(state==true){
       motor1.run(FORWARD);
       motor2.run(BACKWARD);
       delay(90도우회전시간);
       motor1.run(RELEASE);
       motor2.run(RELEASE);
       delay(100);
       motor1.run(FORWARD);
       motor2.run(FORWARD);
       delay(다음라인이동시간);
       motor1.run(RELEASE);
       motor2.run(RELEASE);
       delay(100);
       motor1.run(FORWARD);
       motor2.run(BACKWARD);
       delay(90도우회전시간);
     }
     else{
       motor1.run(BACKWARD);
       motor2.run(FORWARD);
       delay(90도좌회전시간);
       motor1.run(RELEASE);
       motor2.run(RELEASE);
       delay(100);
       motor1.run(FORWARD);
       motor2.run(FORWARD);
       delay(다음라인이동시간);
       motor1.run(RELEASE);
       motor2.run(RELEASE);
       delay(100);
       motor1.run(BACKWARD);
       motor2.run(FORWARD);
       delay(90도좌회전시간);
     }            
     motor1.run(RELEASE);
     motor2.run(RELEASE);
     delay(100);
     motor1.run(FORWARD);
     motor2.run(FORWARD);
} 

위 소스는 최근 아두이노 RC카 소스를 기반으로 오늘 코딩만 삽입하여 수정한 소스입니다. 코딩상으로는 이렇게 설계할 수 있습니다. 하지만 안타깝게는 정상적인 주행 결과를 얻을 수 없습니다. post에서 실패한 사례입니다. 즉흥적으로 상상하고 그걸 바로 코딩화하고 바로 post에 옮기니깐 실패할때는 난감해지네요. 계속 회전각과 일직선주행에 대하 반복 실험을 해서 정확한 각도 시간과 일직선문제를 해결해야 하는데 시간적 여건이 안되어서 이건 그냥 포기할 까 합니다. 여러분들이 시간이 남는 분이 있으시면 이 소스를 기반으로 한번 시간값을 반복 실험을 통해서 각도와 일직선주행 문제를 해결해 보세요. 

우선 단순하게 생각해서 좌/우회전각도시간값을 500으로 하고 다음라인이동시간을 500정도로 잡고 주행을 시도했는데 회전각도와 양쪽 DC기어모터의 순간 속도 차이로 인해 일직선 주행과 90도 회전이 되지 않았습니다. 근사각도로 변경은 되었지만 사실상 오차각도만큼의 주행라인이 크게 변화되는 현상이 발생했더군요. 시간으로 DC기어모터의 각도를 제어해야 한다는게 만만치 않는 부분이네요. 처음부터 stepper Motor 두개를 달았다면 이문제는 쉽게 해결되었을텐데 말이죠

마무리


코딩상으로는 괜찮았는데 실제 주행에서는 DC기어모터의 각도제어랑 두 DC기어모터 직선주행 속도를 일치하니 않는 한계에서 정확한 지그재그 주행을 이루지 못했네요. 안타깝게 실패한 실험입니다.
하지만, 실패한 주행이 되었지만 지그재그 주행패턴 코딩 과정은 생각하는 만큼 표현은 되었네요. 오늘 post은 코딩과정만 보시기 바랍니다.

오늘의 핵심은 이 식입니다.

  //장애물 감지
  if(distance>0 && distance<10){
     int timetemp = maxTime - (millis() - timeVal);
     movePattern(); //다음라인방향전화패턴(실패함)
     timeVal = millis()-timetemp;
  }
  else if(millis() - timeVal > maxTime){
     movePattern(); //다음라인방향전환패턴(실패함)
     timeVal = millis();
  } 

movePattern() 주행패턴이 정교하지 못해서 주행은 실패했지만 위 식의 동작은 문제가 없습니다. 위 식의 내용은 주행중 초음파센서의 장애물이 감지되면 현재 주행라인에서 다음 주행라인으로 넘어가게 되고 장애물이 감지되지 않았다가 정상 주행하다가 maxTime(전체이동시간)만큼 주행하다가 다음 주행라인으로 넘어가게 된다는 코딩입니다.

실제 아두이노 RC카 주행이 실패했지만 그래도 제가 만든 이 식이 너무 아까워서 post를 하게 되었네요.

아두이노 RC카를 애완동물의 행동을 보고 그 행동의 패턴을 코딩으로 만들기 했는데 각도와 직선 주행에서 사실 결함이 많이 발생하네요. 나중에 기회가 되면 stepper Motor 두개로 좀 더 정교하게 제어를 해 봐야겠네요. 다양한 몇가지 패턴을 계속 post를 할까 했는데 코딩으로는 몇개 만들었는데 오늘 실제 주행에서 회전각과 일직선 주행에서 오차가 계속 영향을 줄 것 같아서 RC카 post는 이정도로 우선 마무리 할까 합니다. stepper Motor를 나중에 두개 구매해서 한번 도전해 봐야겠네요. 아직은 구매할 마음이 없지만요.

댓글()

[아두이노] 도망가는 아두이노 RC카 응용

IOT/아두이노|2019. 5. 30. 09:00

[아두이노] 도망가는 아두이노 RC카 응용



오늘은 지난시간에 마무리로 이야기 했던 내용 중 하나를 선택하여 한번 실제로 동작을 테스트 해보면 좋을 것 같아서 이렇게 도전해 봤네요. 상황은 초음파센서 아두이노 RC카에 정면에 다가가면 초음파 아두이노 RC카가 다가온 방향의 반대로 일정거리 동안 도망가도록 주행패턴을 만들어서 실험을 하겠습니다.


1. 초음파센서 아두이노 RC카 회로도


  • 준비물 : L293D Motor Shield, DC Motor 2개, Servo Motor 1개, 초음파센서 1개, 외부전원 2개, 아두이노우노
  • 내용 : A4(Trig), A5(Echo)로 초음파센서에 연결하고 Servo Motor는 왼쪽 상당애 Servo Pin(-,+,Sig)에 연결한다. DC Motor 2개는 M3, M4에 연결합니다.



지난시간의 회로도 입니다.

2. 코딩



도망다니는 아두이노 RC카를 상상하여 그 상상을 코딩화 하는 과정을 이야기 할까 합니다. 상상의 내용은 다음과 같습니다.

[도망가는 아두이노 RC카 상상하기]

  1. 전방에 다가오는 사람이 있는지 확인한다.
  2. 초음파센서로 인지거리 내 감지되면 감지된 반대방향으로 도망간다.
  3. 아두이노 RC카가 후면(엉덩이) 흔들기
  4. 다시 180도 회전하여 전방에 다가오는 사람이 있는지 확인한다.
  5. 이 과정을 계속 반복한다.

1) 전방에 다가오는 사람이 있는지 확인한다.


void loop() {
  //초음파센서 회전
  servo.write(angle);
  delay(50);
  
  int distance = sonar.ping_cm();

  //다가오는 사람 확인
  if(distance>0 && distance<10){
    도망가기;   
  }
  //회전 각도
  if (angle == 140) state = -10;    
  else if (angle == 40) state = 10; 
  angle += state;
}

2) 초음파센서로 인지거리 내 감지되면 감지된 반대방향으로 도망간다.


  //다가오는 사람 확인
  if(distance>0 && distance<10){
    movePattern(); //도망가기
  }

여기서, distance의 거리가 10cm 미만이면 다가 온 걸로 간주 하고 movePattern()함수로 반대방향으로 도망을 가 볼까요.

void movePattern(){
     int timeVal=0;
     motor1.run(BACKWARD);
     motor2.run(BACKWARD);
     delay(500);   
    
    motor1.run(FORWARD);
    motor2.run(BACKWARD);
    timeVal=(180-(angle-90))*5.56;
    delay(timeVal);   
    
    motor1.run(FORWARD);
    motor2.run(FORWARD);
    delay(2000);                
}

정면에 다가온 각도 방향의 정 반대로 도망을 갑니다. timeVal은 1초당 1000일때 1도 당 5의 값으로 가정하여 계산하면 해당 방향을 기준으로 180도 회전을 할려면 다음과 같은 식으로 표현할 수 있습니다.


timeVal=(180-(angle-90))*5;

Servo Motor의 회전(angle)각 방향이 100도면 RC카의 전방 진행 방향이 90도 임으로 왼쪽 10도 각이면 위 식으로 계산을 하면

각도 = 180-(100-90) => 170

만약에, angle이 70도이면

각도 = 180-(70-90) => 200

그리고, 이 각도의 회전각 시간을 구하면 timeVal 변수에 5값을 곱하시면 해당 각도에 대한 아두이노 RC카의 회전각이 나오게 됩니다.

뒤로 회전이 된 후 2초동안 도망가게 됩니다.

motor1.run(FORWARD);
motor2.run(FORWARD);
delay(2000);  

이렇게 하면 계속 후진하는 동작이라서 뭔가 전진하거나 자신의 자리로 되돌아오는 그런 명령들이 필요 하다고 생각되실 꺼에요. 오늘 실험은 하나의 패턴 도망자 아두이노 RC카 이기 때문에 하나의 패턴에만 집중하기 위해서 코딩하고 싶지만 생략했습니다.

다른방식으로 표현하면

전방 기준으로 왼쪽은 오른쪽으로 회전하고 오른쪽은 왼쪽으로 회전하고 싶다면 코딩이 좀 길어집니다.

void movePattern(){
     int timeVal=0;
     motor1.run(BACKWARD);
     motor2.run(BACKWARD);
     delay(500);   
    if(angle>=90){
      motor1.run(FORWARD);
      motor2.run(BACKWARD);
      timeVal=(180-(angle-90))*5;
      delay(timeVal);   
    }
    else{
      motor1.run(BACKWARD);
      motor2.run(FORWARD);
      timeVal=(180+(angle-90))*5;
      delay(timeVal);         
    }
    motor1.run(FORWARD);
    motor2.run(FORWARD);
    delay(2000);                

if문으로 해서 90도 기준으로 왼쪽인지 오른쪽인지 나누게 됩니다. angle>=90 은 90도 이상이면 우회전하게 되고 90도 미만이면 좌회전을 하게됩니다. 이렇게 하면 timeVal 값을 구하는 식은 한개가 달라집니다.

90도 이상 => timeVal=(180-(angle-90))*5;
90도 미만 => timeVal=(180+(angle-90))*5;

보시면 90도 이상이면 180도에서 빼주지만 90도 미만은 180도에서 더해주면 됩니다. 식이 잘 이해가 안되면 angle(각) 값을 숫자로 대입해 보세요. 그러면 이해가 쉬울 듯 합니다.

3) 아두이노 RC카가 후면(엉덩이) 흔들기


도망 간 다음 아두이노 RC카가 후면을 엉덩이 흔드는 것처럼 흔드는 동작을 추가 해 볼까요.

void movePattern(){
  생략...
    
    for(int i=0;i<3;i++){
     motor1.run(FORWARD);
     motor2.run(BACKWARD);
     delay(300);
     motor1.run(BACKWARD);
     motor2.run(FORWARD);  
     delay(300);
    }
}

우로 0.3초 회전 한 뒤에 좌로 0.3초 회전한다. 이 과정을 3번 반복하면 엉덩이를 흔드는 동작처럼 표현 할 수 있겠죠. 만약에 꼬리 같은 걸 후면에 붙여 놓으면 좀 더 그럴싸 해 지겠죠.

4) 다시 180도 회전하여 전방에 다가오는 사람이 있는지 확인한다.


void movePattern(){
  생략...
    
  motor1.run(BACKWARD);
  motor2.run(FORWARD);
  timeVal=180*5;
  delay(timeVal); 
  motor1.run(RELEASE);
  motor2.run(RELEASE);
  angle=90;
  servo.write(angle);
  delay(100);   
}

좌회전으로 180도 회전하여 다시 아까 다가 온 방향으로 아두이노 RC카는 향하게 회전 시킨 후 아두이노 RC카는 정지 상태가 됩니다. 초음파센서는 다시 정면 90도 방향으로 향하게 합니다. 이렇게 해서 도망갔다가 다시 주변을 탐색을 시작하기 전까지의 동작이 끝나게 됩니다. loop()함수는 끝나고 다시 재호출 되어서 loop()함수는 주변에 사람이 있는지 확인하게 됩니다.

5) 이 과정을 계속 반복한다.


위 과정을 loop()함수에서 계속 반복하게 됩니다.

위 과정을 종합하여 코딩하면,

[기본소스]

#include <AFMotor.h>
#include <Servo.h> 
#include <NewPing.h>

AF_DCMotor motor1(3);
AF_DCMotor motor2(4);

Servo servo;
const int servoPin = 10;
const int TRIG = A4;
const int ECHO = A5;
const int MAX_DISTANCE = 100;
NewPing sonar(TRIG, ECHO, MAX_DISTANCE);

int speed=200;
int state = 10;
int angle = 90;

void setup() {
  //Serial.begin(9600);
  motor1.setSpeed(speed);
  motor2.setSpeed(speed);
  motor1.run(RELEASE);
  motor2.run(RELEASE);

  servo.attach(servoPin);
  servo.write(angle);
  delay(1000);
}

void loop() {
  //초음파센서 회전
  servo.write(angle);
  delay(50);
  
  int distance = sonar.ping_cm();
  
  //장애물 감지
  if(distance>0 && distance<10){  
     movePattern(); 
  }   
  //회전 각도
  if (angle == 140) state = -10;    
  else if (angle == 40) state = 10; 
  angle += state;
}

void movePattern(){
    int timeVal=0;
    motor1.run(BACKWARD);
    motor2.run(BACKWARD);
    delay(500);   
    
    //도망
    if(angle>=90){
      motor1.run(FORWARD);
      motor2.run(BACKWARD);
      timeVal=(180-(angle-90))*5;
      delay(timeVal);   
    }
    else{
      motor1.run(BACKWARD);
      motor2.run(FORWARD);
      timeVal=(180+(angle-90))*5;
      delay(timeVal);         
    }
    motor1.run(FORWARD);
    motor2.run(FORWARD);
    delay(2000);  
    
    //후면 흔들기
    for(int i=0;i<3;i++){
      motor1.run(FORWARD);
      motor2.run(BACKWARD);
      delay(300);
      motor1.run(BACKWARD);
      motor2.run(FORWARD);  
      delay(300);
  }
  
    //원위치 전방 보기
    motor1.run(BACKWARD);
    motor2.run(FORWARD);
    timeVal=180*5;
    delay(timeVal); 
    motor1.run(RELEASE);
    motor2.run(RELEASE);
    
    angle=90;
    servo.write(angle);
    delay(100);     
}

동작 하나하나 패턴을 추가해서 표현하니깐 movePattern()함수 내 동작 패턴이 꽤 길어 졌네요. 아두이노 RC카가 어떻게 움직이길 바라면 그 움직임을 하나씩 원하는 행동을 하도록 상상하고 그 상상을 이렇게 코딩화 하면 됩니다.

위 소스는 그냥 즉흥적으로 간단히 만든 거라서 사실 지져분한 코딩입니다. 맘에 들지 않는 코딩이라는 뜻이죠. 뭔가 축약된 코딩을 좋아하는데 이렇게 길게 늘려서 일일히 코딩하는 것을 싫어하기 때문에 맘에 들지는 않지만 대충 이런 느낌으로 코딩을 한다는 의미만 전달하기 위해서 그냥 이 소스로 마무리 합니다.

여러분들은 한번 다른 방식으로 도망자 아두이노 RC카를 만들어 보세요.

추가사항


위의 코딩만으로는 사실 문제점이 많습니다. 무조건 전방에 다가오는 물체에 대해서 도망만 가기 때문에 계속 후진하는 느낌의 코딩입니다. 또한 뒤로 도망을 갈때 보면 뒤에 장애물에 대한 감지가 빠져 있습니다. 이 부분을 추가할려면 loop()함수의 물체 감지 부분을 사용자 정의함수로 빼서 뒤로 도망가는 로직에 물체 감지 함수부분을 호출하는 식으로 코딩을 변경해야 합니다. 그리고 도망가는 2초간의 시간은 delay(2000) 하면 절대 안되고 delay()함수를 사용하지 않는 post [아두이노] delay()함수 안쓰고 delay 제어하기의 원리를 이용해서 2초간 도망가는 주행을 하는 동안 장애물을 감지하는 코딩으로 수정해야 합니다. 그리고, 그냥 도망으로만 끝내지 않고 다시 도망을 갔다가 물체 감지된 방향으로 조금직 다시 직립주행을 하면서 물체와의 거리를 측정하면서 자신이 있던 자리로 되돌아가게 코딩을 하면 좀 더 재밌는 코딩으로 변경 됩니다.

지금 열거한 내용만 코딩을 하더라도 수정해야 할 부분과 추가해야할 코딩이 늘어납니다. 그러면 오늘 전달하고자 하는 도망자 아두이노 RC카의 원리가 제대로 전달되지 않기 때문에 코딩에서는 실제 추가하지 않겠습니다. 이부분은 여러분들의 상상코딩에 맡기겠습니다.

3. 결과


코딩은 그럭저럭 되었는데 결과는 썩 마음에 들지 않네요. 원하는 결과는 얻지 못했습니다. 1초를 1000으로 해서 180도를 1초 회전으로 첨에 잡았는데 회전하니깐 180도 이상의 각도로 회전이 일어나서 댜략 눈 짐작으로 900 정도로 180도로 간주하여 회전을 시켰지만 그래도 회전각은 원한 각도로 정교하게 회전을 되지 않았네요. 2~3번의 주행 테스트를 하고 post를 한 거라 정교한 결과를 얻지 못해서 아쉽네요.


위 영상을 보시면 회전각 오차가 크고 도망가는 주행이 직립주행이 되지 않았네요. 건전지가 추가되고 무게중심이 보조 바뀌쪽으로 좀 더 가서 그런지 보조바퀴의 방향각에 의해서 회전이나 직립주행의 오차가 심하게 발생했네요. 아두이노 RC카의 몸체에 대해서 교정을해야하고 수학적으로 DC기어모터의 속도와 시간값을 통해 회전각을 정교하게 해야하는데 단순하게 눈짐작으로 실험을 한계 이런 오차결과를 만들어 내고 말았네요.

결과는 마음에 들지 않지만 코딩은 대충 어떤 느낌으로 설계하는지만 이해하는 시간이 되었으면 합니다. 기본적으로 이렇게 출발하고 조금씩 문제점에 대해서 해결 코딩을 해가면서 좀 더 정교한 프로그램을 만들어가는 것이죠.

마무리


원래 상상의 의도는 도망자 아두이노 RC카를 만들고자 했는데 느낌이 꼭 애완동물이 주인을 피해 도망갔다가 꼬리를 흔들고 다시 주인이 있는 방향으로 다시 바라보는 느낌의 코딩이 되어버렸네요.

이 느낌으로 좀 더 추가해 볼까 하는 생각도 드는데 아직 결정은 안했습니다. 따라다니는 아두이노 RC카를 다음편에 이야기 할까 그냥 여기서 끝낼까 고민을 좀 해봐야 겠네요.

코딩은 아직 안했는데 상상을 잠깐 해보고 결정해야 겟네요.


댓글()

[아두이노] 아두이노 RC카 자율주행(장애물피하기)

IOT/아두이노|2019. 5. 29. 09:00

[아두이노] 아두이노 RC카 자율주행(장애물피하기)



오늘은 몇일동안 포스트한 장애물을 피하는 자율주행 테스트 해보는 시간으로 내용을 채우고자 합니다. 좀 더 정교한 자율주행 코딩을 할까도 생각 했지만 처음은 단순한 장애물을 피하는 자율주행을 보여드리는 것이 좋을 것 같아서 종합 코딩은 간단하게 표현하여 자율주행의 의미를 전달하고자 합니다.


우선 초음파 아두이노 RC카를 사진으로만 보면 정확히 구조를 이해할 수 없으니 간단히 fritzing으로 회로도를 보여드리고 간단히 장애물피하기 자율주행 코딩을 보여드리겠습니다.

1. 초음파센서 아두이노 RC카 회로도


  • 준비물 : L293D Motor Shield, DC Motor 2개, Servo Motor 1개, 초음파센서 1개, 외부전원 2개, 아두이노우노
  • 내용 : A4(Trig), A5(Echo)로 초음파센서에 연결하고 Servo Motor는 왼쪽 상당애 Servo Pin(-,+,Sig)에 연결한다. DC Motor 2개는 M3, M4에 연결합니다.



위 사진의 아두이노 RC카의 회로도는 아래 그림과 같이 구성되어 있습니다.


위 그림에서 외부 전원을 두개로 분리해서 공급합니다. 참고포 점퍼핀 덮개를 빼주면 아두이노와 Motor Shield의 전원을 나눌 수 있습니다. 그림이 좀 복잡해 보일 수 있지만 내용에 자세히 핀 연결 설명이 되어 있으니깐 해당 위치에 부품의 선을 연결해주시면 됩니다.

2. 코딩



이전 post에서 장애물을 감지하는 방법과 장애물을 피하는 패턴을 살펴 보았습니다. 여러개를 설명했는데 그중에 각각 한개씩 간단한 표현으로 코딩을 하겠습니다.

[기본소스]

#include <AFMotor.h>

AF_DCMotor motor1(3);
AF_DCMotor motor2(4);

void setup() {
  motor1.setSpeed(200);
  motor2.setSpeed(200);
  motor1.run(RELEASE);
  motor2.run(RELEASE);
}

void loop() {  

  초음파센서 장애물 감지;

  motor1.run(FORWARD); //전진
  motor2.run(FORWARD);
  delay(1000);
}

1) 서보모터+초음파센서 장애물 감지


[코딩 순서]

  • 40~140도 사시를 10도씩 회전하면서 초음파센서로 장애물를 측정한다.
  • 장애물 감지 거리를 15cm 미만일 때 감지로 간주한다.
void loop() {
  //초음파센서 회전
  servo.write(angle);
  delay(50);
  
  int distance = sonar.ping_cm();

  //장애물 감지
  if(distance>0 && distance<15){
     movePattern(); 
     //Serial.println(distance);
     motor1.run(FORWARD);
     motor2.run(FORWARD);  
  }   
  //회전 각도
  if (angle == 140) state = -10;    
  else if (angle == 40) state = 10; 
  angle += state;
}

2) 장애물 피하기 패턴


[코딩 순서]

  • 장애물 감지시 0.5초 동안 후진한다.
  • 전방 90도를 기준으로 90이상이면 우회전 90미만 좌회전 시킨다.
  • 장애물 피하기 회전이 끝나면 다시 전진 주행한다.
  • 초음파센서는 방향은 90도로 위치시킨다. (90도 기준으로 다시 10도씩 변화를 시키기 위해서)
void movePattern(){
     motor1.run(BACKWARD);
     motor2.run(BACKWARD);
     delay(500);   
    if(angle>=90){
      motor1.run(FORWARD);
      motor2.run(BACKWARD);
      delay(500);   
    }
    else{
      motor1.run(BACKWARD);
      motor2.run(FORWARD);
      delay(500);   
    }
    angle=90;
    servo.write(angle);
    delay(100);
}

3) 기본소스+장애물감지소스+장애물피하기 패턴소스


위 세가지 소스를 합치면 다음과 같습니다. 참고로 몇가지 다듬어서 코딩을 했습니다.

#include <AFMotor.h>
#include <Servo.h> 
#include <NewPing.h>

AF_DCMotor motor1(3);
AF_DCMotor motor2(4);

Servo servo;
const int servoPin = 10;
const int TRIG = A4;
const int ECHO = A5;
const int MAX_DISTANCE = 100;
NewPing sonar(TRIG, ECHO, MAX_DISTANCE);

int speed=200;
int state = 10;
int angle = 90;

void setup() {
//  Serial.begin(9600);
  motor1.setSpeed(speed);
  motor2.setSpeed(speed);
  motor2.run(RELEASE);
  motor2.run(RELEASE);

  servo.attach(servoPin);
  servo.write(angle);
  delay(1000);

  //Start
  motor1.run(FORWARD);
  motor2.run(FORWARD);  
}

void loop() {
  //초음파센서 회전
  servo.write(angle);
  delay(50);
  
  int distance = sonar.ping_cm();

  //장애물 감지
  if(distance>0 && distance<15){
     movePattern(); 
     //Serial.println(distance);
     motor1.run(FORWARD);
     motor2.run(FORWARD);  
  }   
  //회전 각도
  if (angle == 140) state = -10;    
  else if (angle == 40) state = 10; 
  angle += state;
}
void movePattern(){
     motor1.run(BACKWARD);
     motor2.run(BACKWARD);
     delay(500);   
    if(angle>=90){
      motor1.run(FORWARD);
      motor2.run(BACKWARD);
      delay(500);   
    }
    else{
      motor1.run(BACKWARD);
      motor2.run(FORWARD);
      delay(500);   
    }
    angle=90;
    servo.write(angle);
    delay(100);
}

setup()함수에서 초기화 작업을 하는데 젤 먼저 DC기어모터의 속도를 200으로 세팅하고 각 Motor를 RELEASE(해제 or 정지)상태로 둔다. 그리고 나서 주행전 Servo Motor의 초기 위치는 90도 회전 시켜 초음파센서가 전방90도를 바라보게 한다. 그 다음 1초동안 준비 상태로 있다가 FORWARD(전진)명령으로 아두이노 RC카가 출발하게 됩니다.

loop()함수는 angle(각도)에 위치로 회전을 0.05초 간격으로 합니다. 회전이 될 때 초음파센서(sonar)의 거리를 측정하여 distance에 저장합니다. 이 값이 0보다 크거나 15cm보다 작은 값일 때 장애물을 감지한 걸로 감주합니다. 0의 값은 MAX_DISTANCE의 제한최대거리 값을 넘게 되면 0으로 반환되기 때문에 0의 값이 주행 중에 일정 간격으로 발생하게 됩니다. 그렇기 때문에 0보다 크거나 15cm보다 작은 값으로 if문으로 체크하는 조건식을 만든 것이죠. 이렇게 15cm 미만일 때 장애물 감지 판정을 내리게 되면 if문 이하 문장을 수행 하게 됩니다. 이때 장애물 피하기 패턴을 코딩하면 됩니다 movePattern()함수로 장애물을 피하는 동작을 코딩해 놨는데 이 방식으로 피하고 나면 다시 motor1, motor2은 FORWARD(전진)으로 게속 자율주행을 하게 됩니다.

여기서, movePattern()함수를 살펴보면 먼저 0.5초 동안 후진을 하고 후진 한 후에 Servo Motor가 회전한 현재 각(angle)의 값이 90보다 큰거 아니면 작은 가로 나누게 되는데 이때 90도보다 크면 좌측에 장애물을 감지했기에 우회전 명령문을 0.5초 동안 90도 우회전을 하게 되고 90도보다 작으면 우측에 장애물을 감지했기에 좌회전 명령문으로 0.5초 동안 90도 좌회전을 하게 됩니다. 그리고 다시 전진 주행을 하기 전에 초음파센서의 방향 위치를 초기화 상태로 전방 90도 위치로 회전시켜놓습니다.

대충 전체의 소스에 대해 설명을 했는데 이해하셨는지 모르겠네요.

만약, 다른 방식으로 접근하고 싶다면 장애물 감지 코딩 부분을 다른 감지 주행패턴을 선택해서 붙여 넣으시면 되고요. 장애물 피하기 패턴도 movePattern()함수 내부의 코딩을 원하는 패턴으로 만들어서 넣으시면 됩니다.

3. 결과


그냥 전방의 장애물을 손으로 표현해서 손으로 막을 때 이 손을 아두이노 RC카가 장애물로 감지하고 초음파센서가 감지한 각도에 따라 좌/우회전을 하는 짧게 촬영한 영상입니다.


이렇게 간단하게 장애물 피하기로 자율주행을 출발합니다.

위 코딩을 좀 더 정교하게 하려면 다음과 같이 해야 합니다.

void loop(){
  //장애물 감지
  if(distance>0 && distance<15){
     movePattern(); 
  }  
}   
void movePattern(){
     motor1.run(BACKWARD);
     motor2.run(BACKWARD);
     delay(500);   
    if(angle>=90){
      motor1.run(FORWARD);
      motor2.run(BACKWARD);
      delay(회전각도시간값);   
    }
    else{
      motor1.run(BACKWARD);
      motor2.run(FORWARD);
      delay(회전각도시간값);   
    }
    motor1.run(FORWARD);
    motor2.run(FORWARD);    
        
    angle=90;
    servo.write(angle);
    delay(100);
}

여기서, 회전각도시간값은 여러분들이 가지고 있는 아두이노 RC카의 바퀴힐과 속도를 기준으로 1초(1000)에서 delay값 100을 기준으로 몇도 회전되는지 체크했다가 정확하게 회전각도시간값을 넣어주세요. 그리고 회전을 시킨 후 바로 전진 주행으로 바꿔 주시면 좀 더 정확하게 회전 후 전진 주행이 됩니다. 사실 촬영할 때는 loop()함수에다가 넣어서 간단히 movePattern()함수에서는 회전 주행만 표현했는데 마지막 초음파센서의 90 회전 초기화에서 0.1초 동안의 회전이 더 일어나는 단점을 가지게 되더군요. 그러면, 회전각도시간값으로 정확히 회전을 시키더라도 초기화 0.1초동안 회전이 더 발생하는 문제가 생길 수 있습니다. 단순하게 장애물 피하기 코딩에서는 0.1초 차이는 티도 안나기 때문에 무시하고 촬영을 했지만 post을 작성하면서 이 코딩부분을 수정해서 올릴까도 했지만 촬영은 이전 소스를 기반으로 주행 시켜서 그냥 약간 부족한 상태로 수정 없이 올리게 되었네요. 하지만 이렇게 추가로 이야기 하고 넘어가야 할 것 같아서 좀 더 내용을 채우게 되었네요.

motor1.run(FORWARD);
motor2.run(FORWARD);   

아무튼 이 명령이 어느 위치에 있느냐에 따라 결과는 달라지게 됩니다. 단순한 코딩은 무시 할 정도로 표현해도 되지만 정교한 코딩에서는 명령문의 위치에 따라 딜레이 0.1초 차이도 회전 오류각을 발생할 수 있기 때문에 코딩을 완료되더라도 완료된 코딩의 흐름을 머리속에서 상상하면서 문제가 없는지 체크를 꼭 하셔야 합니다.

마무리


위 코딩을 보면 그렇게 어려운 코딩이 아닙니다. 재밌는 것은 이 원리를 이해하시면 또다른 다양한 표현을 할 수 있습니다. 장애물을 피한다면 아두이노 RC카가 도망다니는 RC카로 표현 할 수 있습니다. 가령, 전방의 특정 각도의 장애물이 감지되면 그 장애물의 각도을 기준으로 180도 회전해서 뒤로 도망가는 RC카를 만들 수 있습니다. 인간과 RC카가 이 원리로 접근하게되면 인간이 아두이노 RC카를 추적하고 아두이노 RC카는 도망자가 됩니다.

아니면, 주행을 규칙적으로 지그재그로 표현을 한다면 지그재그 주행을 할 때 전방의 초음파센서가 장애물을 감지하면 진행 방향에 있는 장애물을 피하기 위해서 진행 라인의 주행을 포기하고 다음 라인의 주행을 이여간다면 로봇청소기와 같은 주행을 할 수 있게 됩니다.

또 다른 상상을 하면 아두이노 RC카를 랜덤 주행을 일정 범위안에서 수행되게 해놓고 있다가 초음파센서의 장애물 감지 범위에 인간이 다가갔을 경우 일정 거리까지 아두이노 RC카가 따라오도록 주행패턴을 만들게 되면 어떤 느낌의 아두니오 RC카가 될까요. 바로 애완동물 아두이노 RC카로 표현이 가능해 집니다.

간단히 장애물 감지와 장애물 피하는 동작의 원리를 곰곰히 생각해보니깐 방금 이야기 했던 상상들이 떠오르더군요. 위에서 설명한 주제들의 원리는 전부 동일한 원리 입니다. 장애물 감지와 장애물 피하기에서 장애물 피하기를 역발상으로 장애물 따라오기로 생각의 관점을 바꾸면 이렇게 또 다른 결과가 나올 수 있습니다. 재밌는 아두이노 RC카를 만들 수 있겠죠.

여러분들도 한번 이 원리를 기반으로 나는 어떤 상상을 할 수 있을지 상상의 나래를 펼쳐보셨으면 합니다.


댓글()

[아두이노] 아두이노 RC카 초음파센서로 장애물 피하기 패턴

IOT/아두이노|2019. 5. 28. 09:00

[아두이노] 아두이노 RC카 초음파센서로 장애물 피하기 패턴



지난 시간에는 초음파센서로 장애물을 감지하는 방법들에 대해서 간단히 살펴 보았습니다. 오늘은 감지 했을 때 피하는 방법에 대해 한번 이야기 하고자 합니다. 아두이노 RC카는 주행 중 전방에 장애물이 감지하면 후진을 할 것인지 좌회전을 할 것인지 아니면 우회전을 할 것인지를 결정해야 합니다. 여러분들은 어떤 선택을 하실 건지 한번 머리속에서 상상을 해보세요. 현재 여러분들이 서 있는 위치에서 앞으로 걷다가 앞에 벽이 나타난다면 나는 어느 방향으로 벽을 피해 이동할지를 상상하며 한번 걸어보세요. 벽이 나타나고 벽을 피해서 방향전환하고 나서 다시 걷는 상상을 하거나 아니면 실제 걸어보시면서 걷는 과정을 기록해 주세요. 이 행동의 기록이 아두이노 RC카의 주행 패턴이 됩니다. 아두이노 RC카는 이 주행 패턴을 통해서 자율주행을 하게 됩니다. 어떤 느낌인지 아시겠지요.


지금부터 장애물 감지 센서인 초음파센서를 지난 시간에 배운 방식 중에 하나를 선택해서 실험해야 하는데 위 사진을 보면 서보모터로 회전되는 초음파센서로 전방에 하나 배치했기 때문에 이 방식을 통해 장애물을 감지 하고 장애물을 피하는 패턴들을 만들겠습니다.

1. 초음파센서로 장애물 감지 시 피하기 패턴



위의 선행 학습을 꼭 하시고 오셔야 합니다. 그래야 아래 내용을 쉽게 이해 하실 수 있습니다.

1) 전방 장애물 피하는 기본 방향 패턴


지난 시간에 몇가지 초음파센서로 장애물 감지에 대해서 살펴 보았습니다. 장애물 감지 중 첫번째 회전 초음파센서로 장애물 감지를 기준으로 한번 패턴을 만들어 보도록 할까요.

주행 중 회전 초음파센서로 장애물을 감지 상황은 다음과 같습니다.


주행 중에 전방에 장애물이 감지하는 한다고 상상해 봅시다. 이 상황에서 여러분들은 어떤 주행 패턴을 만드시겠습니까?


좌회전 아니면 우회전 그것도 아니면 후진 중 어떤 주행패턴을 하실지 머리속에서 그려 보세요.

#include <AFMotor.h>

AF_DCMotor motor1(3); //왼쪽 모터
AF_DCMotor motor2(4); //오른쪽 모터

두개의 DC기어모터를 제어할 Motor가 있을 때

  • motor.run(FORWARD) : 전진
  • motor.run(BACKWARD) : 후진
  • motor.run(RELEASE) : 해제

모터의 기본 동작함수인데 이 함수를 통해서 장애물을 피하는 패턴을 만듭니다.

if(장애물 감지){
  장애물 피하기 패턴;
}

장애물 감지 시 제자리에서 좌/우 회전을 시킨 후 회전 된 방향으로 주행을 계속 진행하도록 주행패턴을 만들어 보도록 합시다. 단, 90도 회전은 0.5초동안 회전하고 180도 회전은 1초동안 회전이라고 가정하고 상상 코딩을 합니다. Motor의 속도에 따라 시간에 따른 회전각은 달라집니다. 개념을 잡기 위해서 0.5초은 90도 이고 1초가 180도라고 상상한 것이기 때문에 이대로 실제 코딩하시면 안됩니다. Motor 속도와 시간에 대한 회전각도를 수학적으로 계산하시거나 단순하게 속도에 따른 시간별 각도를 일일히 체크해서 각도를 가늠하시거나 둘 중 하나를 선택하셔서 나중에 실제 만들어 보세요.


[90도 우회전 후 전진]

motor1.run(FORWARD);
motor2.run(BACKWARD);
delay(500);   
motor1.run(FORWARD);
motor2.run(FORWARD);

[90도 좌회전 후 전진]

motor1.run(BACKWARD);
motor2.run((FORWARD););
delay(500);   
motor1.run(FORWARD);
motor2.run(FORWARD);

이렇게 하면, if문으로 장애물 감지되면 좌/우로 90도 회전 시킨 후 그 방향으로 전진하게 됩니다. 장애물 피하기 주행 패턴이 단순하죠.

다음으로, 뒤로 회전 한다면 좌/우로 회전 방향은 상관 없이 180도 회전을 시키면 됩니다.


[180도 뒤로 회전 후 전진] 우방향을 기본으로 잡았을 경우

motor1.run(FORWARD);
motor2.run(BACKWARD);
delay(1000);   
motor1.run(FORWARD);
motor2.run(FORWARD);

대충 이런 느낌이 됩니다. 1초가 정확히 180도 회전이 아닙니다. 가정한 것이고 DC기어모터 회전 속도에 따라서 회전각은 달라집니다. 가정하에서 코딩한 것이기 때문에 감안하시고 보세요.

이렇게 해서 간단히 장애물을 피해서 주행을 할 수 있게 되었습니다.

2) 전방 장애물을 피할 때 문제점


방금 세가지 피하는 방식에서 문제가 발생할 수 있습니다. 제자리에서 아래 그림처럼 DC기어모터가 회전하면 바퀴를 기준으로 몸체가 돌아가게 됩니다. 몸체가 돌아갈 때 장애물과의 충돌이 발생 할 수 있습니다.


제자리 좌/우회전을 시키거나 뒤로 180도 회전 시킬때 장애물 거리 감지가 짧을 경우 아래와 같은 상황이 발생 할 수 있습니다.

[우회전]


[180도 회전]



위 그림같은 상황 때문에 주행 중 진행 방향에 장애물이 감지 되었을 때 다음 장애물 피하기 동작 패턴을 만들려면 감지한 거리과 아두이노 RC카의 몸체의 크기를 고려해야 합니다. 그리고 피하는 행동을 할 때에도 주변 환경의 장애물과의 충돌 상황도 고려해야 합니다.

[해결 방법]

  • 첫번째, 장애물 감지 거리를 좀 더 길게 잡으면 해결 됩니다. 아두이노 RC카가 충분히 회전 할 수 있는 거리만큼을 장애물 감지 거리로 설정해 놓으면 장애물 감지 후 바로 회전을 하더라도 정상적으로 회전 할 수 있습니다.
  • 두번째, BACKWARD(후진)을 일정 거리만큼 시킨 뒤 회전을 시키면 됩니다. 하지만, 이 경우에는 또 다른 문제점으로 후진 후 회전시 아래 그림처럼 측면에 장애물이 있을 경우 충돌 가능성이 있습니다.

위 그림처럼 문제가 생기면 후면에 초음파센서를 부착하여 후진 시 뒷면에 장애물을 감지하면 해결 할 수 있겠죠. 그런데 이부분은 코딩화 하지 않겠습니다 계속 상황을 만들어 가면 이야기가 끝도 없기 때문에 의미만 전달하기 위해서 이정도로 마무리 합니다.

장애물을 피하는 주행 패턴을 만들 때 처음에 제가 설명한 세가지 주행 패턴을 기반으로 상상코딩을 한 뒤에 주행 패턴을 변화시키십시오. 만약에, 자신이 만든 주행패턴에 문제가 생기면 그 문제 해결을 위한 주행 패턴을 만들고 기존 소스에 덧붙여가며 코딩을 늘려가시면 문제를 충분히 해결 할 수 있게 됩니다. 처음은 단순한 주행패턴으로 머리속에서 정리하고 그 주행 패턴에서 하나씩 새로운 주행 패턴을 만들어가면 좀 더 정교한 장애물 피하기 패턴을 만들 어 가면 자율주행하는 재밌는 아두이노 RC카를 만들 수 있습니다.

2. 회전 초음파센서로 장애물 감지 후 피하기 패턴 - I



위 그림처럼 초음파센서는 전방에 일정 각도로 좌/우 회전을 하면서 각도마다 거리를 측정하게 됩니다. A, B, C로 세부분으로 나누었지만 만약, 40~140도 사이의 각도를 10도 간격으로 하면 11개의 각도의 장애물 감지 거리를 측정하게 됩니다. 11개의 각도가 나올 때 전방 중앙을 90도 각도로 하면 좌/우 5개의 각도로 장애물 감지 거리가 측정 할 수 있습니다.

이렇게 각도별로 장애물이 감지 되었을 때 어떻게 상상코딩을 할까요. 정중앙을 90도기준으로 장애물이 감지된 초음파센서 각도에서 반대 방향으로 회전시켜 장애물을 피하는 간단한 방법이 있습니다.

위 그림에서 B가 90도 기준으로 A은 140도 방향이고 C은 40도방향이라고 한다면 A방향은 좌측이고, C방향은 우측으로 나눌 수 있습니다. 이때, A방향의 장애물이 감지 되었을 때 우측으로 진로 C방향으로 진행하도록 합니다. C방향 우측에서 장애물이 감지되면 좌측으로 진로 C방향으로 진행하게 하면 간단한 피하기 패턴을 만들 수 있습니다.

[A방향 장애물 발견 시 90도 우회전 후 전진]

motor1.run(FORWARD);
motor2.run(BACKWARD);
delay(500);   
motor1.run(FORWARD);
motor2.run(FORWARD);

[B방향 장애물 발견 시 90도 좌회전 후 전진]

motor1.run(BACKWARD);
motor2.run((FORWARD););
delay(500);   
motor1.run(FORWARD);
motor2.run(FORWARD);

이렇게 진로 방향을 바꾼다면 장애물 감지는 아래와 같이 코딩을 할 수 있겠죠.

if(장애물거리<15){
  if(초음파각도>90){
      [A방향 장애물 발견 시 90도 우회전 후 전진];
  }
  else{
      [B방향 장애물 발견 시 90도 좌회전 후 전진];
  }
}

이렇게 단순하게 표현 할 수 있습니다.

추가로

전방, 좌/우측 방향의 장애물이 나타 났을 때 각도별 상황 구간을 잡아 놓고 아두이노 RC카를 좀 더 세부적으로 아래와 같이 if문으로 나누어서 각도별로 회전 주행 패턴을 만들 수 있습니다. 아래는 3구간으로 나눴지만 더 나눌 수 있고 또는 각 나눈 구간에서 다시 if조건문으로 해당 구간의 각도 범위에서 좀 더 각도를 나눠서 제어 방식을 변경할 수 도 있습니다. 이것은 여러분들의 상상력에 달려 있으니깐 한번 상상해 보세요.

if(A상황일때) 우회전;
else if(B상황일때) 좌/우회전 결정;
else if(C상황일때) 좌회전;

3. 회전 초음파센서로 장애물 감지 후 피하기 패턴 - II


위에서는 단순하게 장애물이 발견 된 시점에서 제자리에서 방향전환을 시키고 그다음 주행을 진행 했습니다. 뭔가 주행 중에 멈춰서 회전을 하기 때문에 끊기는 느낌으로 주행이 됩니다.


위 그림처럼 부드럽게 반원을 그리 듯 곡선 주행을 시키는 주행 패턴을 만들고 싶지 않으신가요. 이 방식은 어떤 주행패턴 일까요.

지난 [아두이노] 아두이노 2륜 RC카 주행 패턴 실험에서 주행패턴을 여러가지를 설명했는데 다음 주행패턴 코딩으로 표현을 할 수 있습니다.

motor1.setSpeed(130);
motor2.setSpeed(200);
motor1.run(FORWARD);
motor2.run(FORWARD);

바로, 이 주행패턴 코딩으로 곡선 주행을 하게 됩니다. 좌회전을 하고 싶다면 좌측 DC기어모터의 속도를 낮추게 되면 좌회전을 위 그림처럼 하게 되고 우회전을 하겠다면 우측 DC기어모터의 속도를 낮추면 그 방향으로 회전이 이뤄집니다. 실험에 사용하는 2륜 아두이노 RC카의 방향전환은 해당 DC기어모터의 속도에 따라서 방향을 전환하면서 주행할 수 있습니다. 도로주행과 같은 느낌의 주행이 되겠죠.

하지만, 아두이노 RC카는 이 방식만 있는게 아닙니다. 앞바퀴에 핸들식으로 서보모터를 부착해서 좌/우회전을 시킬 수 있는 방식이 있습니다. RC카 완제품을 사시면 앞바퀴 핸들식으로 무선조정하는 제품들을 많이 보셨을 꺼에요. 이방식에서는 서보모터가 45도가 수평일 때 90도는 좌회전이고 0도는 우회전으로 방향으로 조정하고 뒷바퀴는 그냥 RC카의 속도와 전진/후진 기능을 담당하면 됩니다.


servo.write(90);
motor1.run(FORWARD);
motor2.run(FORWARD);

이렇게 코딩을 바꾸면 됩니다.

마무리


대충 장애물 감지 했을 때 몇가지 패턴들을 만들어 보았습니다. Post [아두이노] 아두이노 2륜 RC카 주행 패턴 실험 의 내용에서 별로 바뀐 부분은 없습니다. 그냥 장애물 감지했을 때 상황을 두고 몇가지 패턴만 만들었을 뿐입니다. 상황을 그림으로 그리고 나서 그 그림을 기반으로 DC기어모터의 바퀴 회전을 어떤 형태로 회전 시킬 건지만 여러분들이 결정해서 패턴을 만들어 내면 됩니다.

  • motor.run(FORWARD) : 전진
  • motor.run(BACKWARD) : 후진
  • motor.run(RELEASE) : 해제

이 함수 3개를 이용하여 초음파센서로 장애물이 감지되면 각 DC기어모터를 FORWARD, BACKWARD, RELEASE 중 하나를 선택하여 장애물를 피하는 주행 패턴을 만들면 됩니다.

처음에는 이렇게 단순하게 장애물에 대해서 난 이렇게 피할꺼야! 아니면 저렇게 피할꺼야! 하면서 쉽게 만들면 됩니다. 처음부터서 정교하게 실제 차처럼 주행시켜야하지 하면 단순하 RC카 주행도 못시킬 가능성이 큽니다. 처음은 단순하게 무조건 쉽게 아두이노 RC카 주행을 시키면서 거기서 문제점이 발견되면 그 문제에 대해 다시 또 다른 주행 패턴을 만들고 하면서 조금씩 살을 붙여가면서 하셔야 정교한 주행이 되는 아두이노 RC카를 만들어 낼 수 있습니다.

오늘 Post도 처음에는 기조척으로 90도 기준으로 해서 좌/우 방향 회전하여 주행 패턴을 만들었는데 만들고 나서 Post를 쓰다보니깐 쓰는 도중에 상상코딩을 하게 되면서 주행 패턴에 대해 내용이 추가되었네요. 몇가지 더 내용이 있었는데 너무 길게 쓰는 것은 좀 그래서 중간에 멈췄네요. 다른 상황과 주행 패턴이 있었는데 대충 이런식으로 장애물을 피하는 주행패턴을 만들 수 있다는 의미를 전달하고 여러분들의 상상력에 맞기는게 나을 것 같아서 이정도로 마무리 했네요.

다음 Post에서 장애물 감지와 장애물 감지 했을 때 어떤 주행 패턴을 선택할지는 결정을 못했네요. 90도 기준으로 좌/우 방향 회전이 가장 유력하지만 너무 복잡한 주행 코딩은 안하고 단순하게 의미전달하는 주행 코딩으로 소개할 것 같습니다. 아무튼 여러분들은 오늘 제가 상상한 주행 패턴을 보시고 여러분들도 직접 장애물이 이렇게 배치 되어 있다면 난 이런 주행을 시켜봐야지 하고 상상을 하는 시간을 가졌으면 합니다.

댓글()

[아두이노] 초음파센서 아두이노 RC카 장애물 감지 방법

IOT/아두이노|2019. 5. 27. 09:00

[아두이노] 초음파센서 아두이노 RC카 장애물 감지 방법



오늘은 초음파센서로 전방에 장애물을 감지하는 방법에 대해서 이야기를 할까 합니다. 우선, 주행하는 전방에 장애물이 등장 했을 때 여러분들이 제작한 RC카가 어떤 주행을 시킬 것인지 상상을 한번 해봅시다. 주행과 장애물 감지에 대해 잘 상상이 안될 수 있습니다. 그런데 주행과 장애물 감지 원리를 알면 그렇게 어렵지 않습니다. 주행과 장애물 감지에서 주행은 그냥 전진주행을 하게 하고 전진 주행 중 장애물에 대해 일정시간 단위로 초음파센서가 측정하게 하면 됩니다. 이 두가지 과정을 loop()함수에서 반복하게 하면 아두이노가 전진 주행중에 실시간으로 계속 장애물을 감지하게 되겠죠. 그리고 장애물이 감지 되었을 때 주행 방향을 바꿔주는 코딩을 하면 아두이노 RC카 자율주행이 됩니다. 복잡하게 출발하지 말고 쉽게 전진 중행을 하면서 초음파센서로 거리를 측정하여 장애물을 감지한다는 개념만 잡고 출발하시면 됩니다.


그러면, 간단히 상황을 설정하고 장애물 감지에 대해 살펴보도록 합시다.

1. 아두이노 RC카의 기본 주행



참고 자료를 보시면 주행 패턴에 대한 내용입니다. RC카가 주행을 하기 위한 기본 소스 코딩이 있는데 주행 패턴에 대해 사전학습을 하셨으면 합니다. 우선 아두이노 RC카의 움직임을 먼저 머리속에서 개념을 잡아놓고 출발하시면 쉽게 코딩 할 수 있습니다.

자율 주행은 전진 주행을 기본 베이스로 합니다.

#include <AFMotor.h>

AF_DCMotor motor1(3);
AF_DCMotor motor2(4);

void setup() {
  motor1.setSpeed(200);
  motor2.setSpeed(200);
  motor1.run(RELEASE);
  motor2.run(RELEASE);
}

void loop() {  

  초음파센서 장애물 감지;

  motor1.run(FORWARD); //전진
  motor2.run(FORWARD);
  delay(1000);
}

이렇게 기본 베이스 코딩이 끝났습니다. 실행을 하면 무조건 전진 주행을 하게 됩니다. 지난 RC카 post에서 위 소스에 대한 설명을 했기 때문에 간단히만 재정리 차원으로 설명하면 motor1(3), morot2(4)로 모터쉴드에서 M3, M4의 위치의 핀으로 DC기어모터 두개를 제어하는데 속도는 setSpeed(200)으로 스피드가 200이고 FORWARD(전진), BACKWARD(후진), RELEASE(해제) 중에서 loop()함수에서 무한 반복 FORWARD(전진)을 한다는 로직입니다.

딱 한줄로 정리하자면 전진만 하는 RC카라고 생각하시면 됩니다.

자율주행 기본 베이스 코딩은 끝났습니다. 이 소스를 기반으로 초음파센서로 장애물을 감지하는 방법들을 살펴 볼까요.

2. 초음파센서로 장애물 감지


초음파센서로 장애물을 감지하는 방식은 엄청 많습니다. 지금 소개하는 방식 외에도 더 많지만 생각나는 것만 몇개 간단히 설명을 할까 합니다.

1) 회전 초음파 센서로 장애물 감지



위 그림처럼 직진으로 주행하다가 장애물이 나타났을 때 초음파센서가 장애물을 어떤 식으로 감지 해야 할까요. 초보적 접근 방법으로는 두가지 방식으로 나누어 살펴 볼 수 있습니다. 주행 중 전방, 좌/우측 방향의 장애물 감지하는 방식과 주행 중에는 전방 장애물만 감지하다가 장애물 발견시 주행 중단 후 좌/우측 방향 장애물 감지하는 방식으로 나누어 살펴 볼 수 있습니다.

주행 중 전방, 좌/우측 방향의 장애물 감지



위 그림처럼 아두이노 RC카는 전방으로 진행하면서 서보모터가 부착된 초음파센서가 전방 일정 각도 범위로 왔다 갔다 회전하면서 장애물을 감지합니다. 이 방식은 전방, 좌/우측 방향으로 3가지 방향을 실시간으로 측정하여 장애물이 감지했을 때 이 3가지 방향의 값을 기준으로 장애물을 피하기 위한 RC카 주행 패턴을 만들 수 있습니다. 주행 중에 초음파센서가 장애물 감지하기 위해 거리 측정을 하고 장애물이 감지 된 측정 각도에 따라 진행 방향을 바꿀 수 있기 때문에 장애물이 감지된 각도에 따라 적절하게 방향을 바꿀 수 있게 할 수 있습니다.

void loop() {
  //회전
  servo.write(angle);
  delay(50);  

  //거리측정
  int distance = sonar.ping_cm();
  
  //장애물 감지
  if(distance<15){
      각도에 따른 장애물 피하기 동작;  
  }
  
  //회전 각도
  if (angle == 140) state = -10;    
  else if (angle == 40) state = 10; 
  angle += state;

  전방주행;
}

위 소스는 지난시간에 정상적으로 초음파센서가 0~180도 회전되는지 테스트한 코딩을 약간 수정한 소스입니다. 이 코딩을 기반으로 0.05초 간격으로 회전하면서 거리를 측정하면 됩니다. 회전 각도는 10도씩하여 40~140도 사이를 11번을 측정하게 됩니다. 1도씩 안하고 10도씩 한 이유는 사실 장애믈을 측정하기 위해서 1도씩 하면 110번을 측정해야하고 왕복 220번을 0.05초 간격으로 측정을 한다면 꽤 긴시간이 걸리기 때문에 실시간 대응이 어렵습니다. 짧게 돌면서 원하는 동작을 수행하기에는 10도정도가 가장 이상적이네요. 더 큰 각도로 제어해도 됩니다, 그냥 90도, 135도, 45도 이렇게 세각도만 측정해도 됩니다. 선택은 여러분의 마음입니다.

주행 중에는 전방 장애물만 감지하다가 장애물 발견시 주행 중단 후 좌/우측 방향 장애물 감지



아두이노 RC카가 직진 주행하는 중 전방 방향의 장애물만 측정합니다. 그러다가 장애물이 발견 되면 위 그림에서 오른쪽 그림처럼 A, B 각도의 장애물을 있는지 측정해서 둘 중 안전한 방향을 찾아 진행 방향을 선택하는 방식입니다.

void loop() {
  delay(50);  

  //거리측정
  int distance = sonar.ping_cm();
  
  //장애물 감지
  if(distance>0 && distance<15){
    주행정지
      angle=135;
        servo.write(angle);
        delay(500);
        int distanceA = sonar.ping_cm();
        angle=45;
        servo.write(angle);
        delay(500);
        int distanceB = sonar.ping_cm();
        
    if(distanceA<distanceB){
         B방향으로 피하기 주행;  
    }
    else{
         A방향으로 피하기 주행;
    }
  }
  전방주행; 
}

위 소스는 0.05초 간격으로 전방 장애물을 감지하다가 장애물이 발견되면 if문으로 들어가서 먼저 주행이 정지되고 그다음 135도와 45도의 방향으로 장애물을 감지합니다. 그리고 둘 중 거리값이 긴 쪽으로 장애물을 피하는 동작을 만들 수 있습니다.

2) 고정 초음파센서 장애물 감지



고정 형태로 한개의 초음파센서로 전방 장애물만 감지합니다. 전방 장애물을 감지 할 때 장애물을 피하기 동작 패턴을 만들기가 애매합니다. 그냥 랜덤 방향으로 할지 아니면 무조건 우방향으로 피할지는 여러분의 마음에 달렸습니다.

void loop() {
  delay(50);  

  //거리측정
  int distance = sonar.ping_cm();
  
  //장애물 감지
  if(distance<15){
    장애물 감지 방향선택;
  }
  전방주행; 
}

코딩은 가장 단순합니다. if문으로 전방 장애물이 발견 되면 그냥 후진, 좌/우 방향으로 진로 변경 할지는 여러분들의 선택으로 하나의 방향을 만들어 주면 됩니다.

3) 양쪽 두개의 고정 초음파 센서 장애물 감지



두개의 고정된 초음파 센서로 장애물을 감지할 경우 A, B 두지점으로 좌/우 방향 위치의 장애물을 감지하게 됩니다. 이 경우는 위에서 전방 장애물을 감지 되었을 때 주행을 정지 한 상태에서 좌/우 방향 위치의 장애물을 감지 했던 코딩과 유사 합니다. 차이점은 주행 중에 실시간으로 좌/우 방향의 장애물을 감지 한다는 점만 차이가 있습니다.

void loop() {
  //거리측정
  delay(50);  
  int distanceA = sonar[0].ping_cm();  
  delay(50);  
  int distanceB = sonar[1].ping_cm();
    
  //장애물 감지
  if(distanceA<15 || distanceB<15){
    if(distanceA<distanceB){
         B방향으로 피하기 주행;  
    }
    else{
         A방향으로 피하기 주행;
    }
  }
  전방주행; 
}

이렇게 두 지점의 거리를 측정 한 뒤에 if문에서 조건식을 체크하는데 '||'로 두 조건식 중 하나라도 만족하면 참인 조건문으로 체크하게 됩니다. 둘중 하나라도 만족하면 진로 방향에 장애물이 있다고 간주하는 것이죠. 즉, A or B의 거리가 15cm 이하이면 참이되어 장애물을 감지된 걸로 간주 합니다. 여기서, 두 지점을 비교하여 A지점이 거리가 더 짧으면 B방향으로 주행하게 만들고 A지점의 거리가 더 길면 A방향으로 주행하도록 만들 수 있습니다.

이외에도 장애물 감지 방식은 여러분들이 상상하는 방식에 따라서 다양하게 표현이 가능합니다. 순간 떠오른 생각들을 몇가지 정리한 것이 위의 장애물 감지 표현입니다. 여러분들도 이 방식 말고 다른 방식으로 장애물을 감지할 수 있는 방법을 찾아보셨으면 합니다. 그래야 상상코딩 능력을 키울 수 있습니다.

마무리


오늘은 초음파센서를 이용하여 장애물을 잠지하는 방법들을 살펴 보았습니다. 초음파센서를 어떤 형태로 배치하느냐에 따라서 감지하는 방식이 달라집니다. 어떤 방식이 정도라도 말 할 수 없으며 여러분들이 원하는 방식으로 표현하시는게 바로 정도입니다. 그리고, 위에서 열거한 방식으로 구지 안하셔도 됩니다. 여러분들의 상상력으로 감지 방식을 만들면 됩니다.

장애물 감지를 위해 실험에 사용한 초음파센서를 이용하셔도 되고 다른 거리측정 센서를 이용하셔도 됩니다. 아니면 전혀 다른 방식으로 주변을 감지할 수 있는 부품을 사용하여 표현하셔도 됩니다. 저는 가장 쉽게 접근할 수 있는 방식이 초음파센서라서 초음파센서를 사용한 것 뿐입니다. 여러분들이 다른 방식으로 하기 어려우시다면 1200원 짜리 초음파센서를 이용하여 실험하셔도 됩니다. 초음파센서를 어떻게 배치하고 사용할지는 여러분의 상상력에 달려 있음으로 한번 상상의 나래를 펼쳐보세요.

댓글()

[아두이노] 초음파센서 아두이노 RC카 자율주행 준비 입문자용

IOT/아두이노|2019. 5. 26. 09:00

[아두이노] 초음파센서 아두이노 RC카 자율주행 준비 입문자용



아두이노 2륜 RC카를 가지고 초음파센서와 결합하여 장애물을 감지하면서 자율주행을 할 수 있도록 하는 간단한 실험을 할 예정입니다. 오늘 Post는 초음파센서를 이용한 자율주행 RC카를 만들기 위한 몸체 조립과 조립에 대한 테스트 동작을 통해 아무 문제가 없는지 확인하는 단계의 내용으로 구성되어 있는데 천천히 배워보도록 하죠.

진짜로, 정교한 자율주행 RC카를 만든다면 영상처리 부분까지 하셔야 합니다. 입문자분들이 바로 영상처리까지 하기는 무리가 따릅니다. 저도 영상처리 부분은 어렵고 실시간 영상을 가지고 주변환경 영상의 에지를 추출하여 그 값을 기반으로 주행 처리를 해야하는데 대충 코딩 방향은 아는데 실시간 영상에서 에지 검출이 좀 힘들어서 설명드리기가 어렵네요. 에지 검출이 영상처리책 보면 대표적으로 canny, sobel 에지 검출 알고리즘이 있습니다. 이 알고리즘으로 정지 영상에서 에지를 추출하는 것은 쉽지만 실시간 영상에서는 저도 알고리즘 로직이 잘 감이 안와서 설명을 못 드리겠네요. opencv로 얻은 영상에서 에지를 검출하고 그 영상을 기반으로 주행을 시키는 것 같은데 고급 자율주행은 사실 깊게 이쪽 분야로 공부를 안해서 아쉽게 실험을 못해 봤습니다. 나중에 라즈베리파이로 공부할 때 한번 도전은 해보고 싶긴 하네요.

사설은 그만하고 오늘 post의 주제는 지난 시간에 만든 아두이노 RC카 정면에 초음파센서를 부착하는 조립하는 단계입니다. 초음파센서에 서보모터를 통해 0~180도 사이각의 회전을 시킬 수 있는 형태로 조립을 하게 되는데 사실 뼈대가 부품가격과 거의 비슷하기 때문에 그냥 테이프로 부착시켰습니다. 테이프로 부착하다보니 정교한 측정이 되지 않지만 그래도 근사값 측정을 통해서 원하는 동작을 충분히 실험할 수 있기 때문에 아무런 문제는 없습니다. 여러분들은 뼈대를 구매하거나 3D 프린트로 직접 만들시면 좋겠죠. 저처럼 테이프로 고정시키는 실험은 보기 흉하니깐 뼈대를 사셔서 이쁘게 만들어 보세요.


이제 본격적으로 아두이노 RC카 자율주행을 도전 할까요.

1. 아두이노 RC카 준비



사전학습 post로 가셔서 아두이노 RC카에 대한 학습을 먼저 하셔야 합니다. 대충 사전학습에서 RC카 조립을 끝낸 상태면 이렇게 완성되어 있겠죠.


조립이 완성된 상태에서 다음 준비 부품이 필요합니다.

2. 아두이노 RC카에 추가 부품 조립


  • 준비물 : 아두이노 RC카 1대, 초음파센서 1개, ServoMotor 1개


위 사진에서는 뼈대가 있으면 좋은데 간단히 실험을 하기 위해서 그냥 테이프로 붙였습니다. 아두이노 RC카 정면에 Servo Motor와 초음파 센서를 정면을 바라보도록 배치하시면 됩니다. 혹시 뼈대를 개인적으로 구매하신다면 안정적으로 배치 할 수 있겠죠. 저는 테이프로 붙여서 각도도 안맞고 약간 아래로 쳐져 있어서 좀 불편하게 실험 했네요.


위에서 바라보는 모습입니다. 보시면 A은 초음파센서핀으로 연결합니다. 초음파센서 핀은 A4(Trig), A5(Echo)핀입니다. 그리고 B는 Servo Motor 핀을 연결합니다. 바깥쪽부터 (-,+,sig) 이렇게 순서대로 있는데 3핀을 순서대로 연결하시면 됩니다. 제가 실험한 모터쉴드는 2개의 Serovo Motor 핀을 제공하는데 상단 첫번째 줄은 아두이노 디지털핀 10번이고 두번째 줄은 9번핀이네요. 10번핀을 사용하였습니다.

좀 더 자세히 아래 사진의 L293D Motor Shield의 모습을 보시고 연결하세요.


해당 위치에 핀을 꼽아주고 아두이노 RC카 정면에 Servo Motor와 초음파 센서를 부착하시면 조립은 완성입니다.

2. 간단히 장애물 감지센서 시범 회전 코딩



Servo Motor

#include <Servo.h> 
  • Servo servo : 서보모터 객체변수 선언
  • servo.attach(servoPin) : 서보모터 시작하는데 사용되는 핀은 servoPin(10) 임
  • servo.write(angle) : angle 값으로 서보모터를 회전 시킨다.

NewPing

#include <NewPing.h>
  • NewPing sonar(TrigPin, EchoPin, MaxDistance) : TrigPin과 EchoPin과 최대제한거리(MaxDistance)의 값을 선언합니다.
  • sonar.ping_cm() : 센서 거리를 'cm'로 계산된 값을 출력한다.

1) Servo Motor 회전

Servo Motor가 정상적으로 회전이 되는지 테스트 코딩을 해야 겠지요.

Servo servo;
const int servoPin = 10;
int state = 1;
int angle = 90;

이렇게 우선 서보모터 객체변수을 하나 만들고 서보모터를 제어할 아두이노 디지털 핀 10을 선언하고 초기 각도(angle) 값을 90도로 표현 했습니다. 그리고 state은 초기값이 1인데 이 값은 1이면 1씩 증가 -1이면 1씩 감소하는 변수로 사용하기 위해 만든 변수입니다.

void setup() {
  servo.attach(servoPin);
  servo.write(angle);
  delay(1000);
}

setup()함수에서 초기화 작업을 하는데 서보모터를 시작하고 바로 servo.write()함수를 사용하여 angle(90)각도로 회전합니다. 딜레이 시간은 1초를 줬네요. 초기값이라서 원하는 시간값을 여러분들이 마음대로 결정하세요. 서보모터를 회전시킬 만큼의 딜레이시간을 줘야하는데 1초은 꽤 긴시간이고 더 짧게 딜레이시간을 주고 90도까지 회전 시켜도 됩니다. loop()함수로 진입하기 전에 충분히 대기시간을 주기 위해서 1초정도 딜레이를 줬네요.

void loop() {
  //회전
  servo.write(angle);
  delay(50);  

  //회전 각도
  if (angle == 180) state = -1;    
  else if (angle == 0) state = 1; 
  angle += state;
}

loop()함수는 0.05초 간격으로 서보모터를 angle(각)으로 회전시키게 됩니다. 어떻게 회전될 까요 회전 각도 로직을 살펴보시기 바랍니다.

  if (angle == 180) state = -1;    
  else if (angle == 0) state = 1; 
  angle += state;

보시면 angle이 180도면 state은 -1이고 angle이 0도이면 state 값은 1이다. 이 의미를 이해하기 위해서는 아래 문장을 보시면 쉽게 이해가 되실 꺼에요.

angle = angle + state;

이 문장은 0.05초 간격으로 loop()함수가 무한 반복하는데 기존에 angle값에다가 state을 계속 더해주는 문장입니다. 여기서, state가 1이면 1씩 증가하고 state가 -1이면 1씩 감소하게 됩니다. 의미를 잘 이해해 주세요. 이렇게 되면 초기값이 state가 1이기 때문에 초기각도 angle이 90도니깐 1도씩 증가하게 됩니다.

서보모터는 0~180도까지 제어가 가능합니다 그러면 1씩 증가하더라도 180도를 넘을 수 없게 됩니다 180도가 되면 state값을 -1로 변경하면 1도씩 감소하게 되고 역방향으로 회전하게 됩니다. 그러면, 다시 역방향으로 1도씩 감소하는데 angle은 0이하로 떨어질 수 없습니다. 이때 state 값을 1로 변경하고 다시 정방향으로 1도씩 증가하게 됩니다. 이렇게 표현하면 0~180도 사이를 1도씩 왔다 갔다 회전하게 됩니다.

loop()함수 로직의 동작은 0.05초 간격으로 0~180도 사이를 무한 반복 회전을 하게 됩니다. 이 움직임을 보시면 초음파레이더가 생각 나시는 분이 있을 지 모르겠네요. 초음파레이더의 기본 동작 코딩입니다. 이 코딩으로 초음파레이더를 만들 수 있습니다. 현재 우리가 초음파레이더를 만드는 것이 목적이 아니기 때문에 서보모터 회전에 대한 테스트 동작으로만 이해해 주셨으면 합니다.

2) 초음파센서 거리 측정


이제는 서보모터가 회전할 때마다 초음파센서로 거리를 측정해야 겠죠.

NewPing sonar(A4, A5, 100);

trig(A4), Echo(A5), 제한거리1미터(100)으로 초음파센서 객체변수를 만듭니다.

  int distance = sonar.ping_cm();

distance 변수에 초음파센서에서 측정한 거리(cm)값이 저장됩니다. 이렇게 해서 거리 측정이 끝났네요.

그러면 이 코딩은 전체소스 안에서 어느 위치에 삽입하는 것이 좋을까요. 회전 시마다 초음파센서로 측정한다고 했죠. 서보모터는 어떻게 회전한다고 했죠. 0.05초 간격으로 회전이 이뤄집니다. 그러면, 0.05초 간격으로 회전할 때 초음파센서로 측정하면 되겠죠. 즉, 서보모터를 angle(각)으로 회전시킨 후 초음파센서로 거리를 측정하게 코딩하면 간단히 해결 됩니다.

void loop() {
  //회전
  servo.write(angle);
  delay(50);  
    
  int distance = sonar.ping_cm();
    
  //회전 각도
  if (angle == 180) state = -1;    
  else if (angle == 0) state = 1; 
  angle += state;
}

이렇게 하면, 0.05초 간격으로 서보모터를 회전시키고 distance 변수에 회전 시킨 각도에서 거리측정한 값이 저장됩니다.

그러면, 이 값을 시리얼모니터로 정상적으로 출력되는지 Serial 함수로 표현하면 되겠죠.


  • Serial.begin(9600) : 시리얼통신 시작
  • Serial.print(distance) : 시리얼모니터로 출력

3) 종합 코딩


좀 더 깔끔하게 각도와 거리값을 동시에 시리얼모니터로 출력시켜서 확인할 수 있도록 소스를 수정하였습니다. Serial함수는 너무 많이 설명을 드렸기 때문에 구지 설명을 안드려도 아실꺼라 믿고 아래 변경된 부분만 잘 확인해 주세요.

참고로, 완성된 소스는 초음파레이더 소스와 동일합니다. 이 소스로 processing으로 시각화 하면 초음파레이더가 됩니다. 초음파레이더로 보시지 마시고 그냥 앞에 장애물을 감지하는 센서로 보셨으면 합니다. 서보모터의 회전이 정상적으로 이뤄지고 거리측정이 정상적으로 이루어지는지 테스트하는 용도로 코딩을 바라 보시기 바랍니다.

[소스]

#include <Servo.h> 
#include <NewPing.h>

const int TRIG = A4;
const int ECHO = A5;
const int MAX_DISTANCE = 100;
NewPing sonar(TRIG, ECHO, MAX_DISTANCE);

Servo servo;
const int servoPin = 10;
int state = 1;
int angle = 90;

void setup() {
  Serial.begin(9600);
  servo.attach(servoPin);
  servo.write(angle);
  delay(1000);
}

void loop() {
  //회전
  servo.write(angle);
  delay(50);  

  //거리측정
  int distance = sonar.ping_cm();
  Serial.print(angle);        
  Serial.print(" : ");        
  Serial.print(distance);    
  Serial.println(" cm");         

  //회전 각도
  if (angle == 180) state = -1;    
  else if (angle == 0) state = 1; 
  angle += state;
}

newPing 라이브러리를 혹시 안깔고 코딩하신분들이 있을 것 같아서

라이브러리 매너저 창에서 "newPing"이라고 검색하시면 자동으로 검색되고 해당 라이브러리를 설치하시면 됩니다.


3. 결과


촬영이 좀 깔끔하게 되지 못했네요. 폰으로 찍어서 하다 보니깐 공간적 제약도 따르고 해서 좀 보기 불편하시더라도 대충 어떤식으로 Servo Motor가 회전 되고 초음파센서를 통해 거리가 측정되는지 영상으로 살펴보시기 바랍니다. 참고로 위쪽 상단는 모니터가 있어서 거리값이 10~11정도로 측정됩니다. 오류값이 아니라 모니터와의 거리 때문에 나온 값이니깐 감안하시고 보세요.


마무리


오늘은 아두이노 RC카가 준비된 상태에서 두개의 부품 Servo Motor와 초음파센서를 조립에 대해 간단히 살펴보았습니다. 그리고 정상적으로 동작하는지 실험 코딩으로 테스트까지 해보았습니다. 이렇게 해서 초음파센서를 통해 아두이노 RC카는 정면의 장애물 감지까지 할 수 있게 되었습니다. 다음 단계는주행 도중에 장애물이 감지된 정보에 대해 어떻게 반응 할 것인지가 남아 있습니다.

사실 위에서 정상 작동하는지 테스트한 코딩을 이해하셨다면 조금만 상상을 더하면 장애물을 피해 자율주행을 시키는 코딩은 어렵지 않게 하실 수 있을 겁니다. 이미 이 post로 아두이노 RC카 자율주행은 끝난 거나 다름 없습니다. 그런데, 이걸로 어떻게 자율주행이 되냐고 생각하시는 분들도 많을 꺼에요. 잘 연상이 안되실 꺼에요. 상상을 많이하고 자기 자신이 RC카라고 상상하면서 내 이마에 서보모터가 부착되어 회전하고 있고 회전하면서 초음파센서로 거리를 측정하고 있다고 상상하면서 한번 제자리에서 걸어 다녀보세요. 전방에 벽이 나타나면 여러분들은 걷다가 멈추게 되겠죠. 그리고, 그 벽을 피해서 어떤 행동을 하겠죠. 벽 앞에서 다시 뒤로 되돌아 간다거나 오른쪽 길이 있으면 오른쪽으로 걸음을 옮기게 되겠죠. 이렇게 어떤 행동을 취하게 됩니다. 그 행동을 코딩화 하면 그 코딩이 아두이노 RC카의 자율주행 코딩이 됩니다. 즉, 어떤 상황이 되면 그 상황을 피하기 위해서 어떤 행동을 취하고 그 행동이 자율 주행 명령 코드가 되어 실제로 아두이노 RC카가 자율주행을 하게 됩니다. 코딩은 모르더라도 대충 어떤 느낌이신지 아시겠지요.

한번 자기자신이 아두이노 RC카라고 상상하고 제자리에서 주변을 걸어다녀보시면서 상황을 만들고 그 상황을 기록했다가 상상 코딩을 해보셨으면 합니다.


댓글()

[아두이노] newPing 라이브러리로 초음파센서 제어

IOT/아두이노|2019. 5. 25. 09:00

[아두이노] newPing 라이브러리로 초음파센서 제어



이제까지 초음파센서를 이용하여 거리를 구하기 위해서 직접 공식에 대입하여 코딩을 했었습니다. 직접 코딩하는 것이 불편하신 분들을 위해 newPing이라는 라이브러리를 소개할까 합니다. newPing이라는 라이브러리를 통해서 초음파센서를 쉽게 제어하여 원하는 거리측정 값을 얻을 수 있습니다. newPing 라이브러리를 이야기하기전에 우선 초음파센서 거리측정에 대해서 복습해야겠죠.

초음파센서 거리를 구하는 공식은 다음과 같습니다.

duration = 초음파 센서를 통해 읽은 거리 시간값
distance = ((float)(340 * duration) / 10000) / 2;

위 공식은 복습차원으로 봐주세요. duration을 구하는 코딩 로직은 참고 자료 post를 한번 읽고 와주세요.


여기까지 복습이 완료 된 상태라면 newPing 라이브러리로 실제 실험을 해봅시다.

1. 초음파센서 회로도



공개회로도는 3핀 초음파센서로 직접 측정 로직을 코딩하고 직접 측정한 시간값을 거리를 구하는 공식에 대입하여 구한 예제입니다. 실제 실험에서는 4pin으로 구성된 초음파 센서를 실험하기 때문에 회로도를 표현하면 아래 회로도와 같습니다.


2. newPing 라이브러리 설치


라이브러리 매너저 창에서 "newPing"이라고 검색하시면 자동으로 검색되고 해당 라이브러리를 설치하시면 됩니다.


3. 코딩



NewPing

#include <NewPing.h>
  • NewPing sonar(TrigPin, EchoPin, MaxDistance) : TrigPin과 EchoPin과 최대제한거리(MaxDistance)의 값을 선언합니다.
  • sonar.ping_cm() : 센서 거리를 'cm'로 계산된 값을 출력한다.
  • 다수의 초음파센서 사용 :
NewPing sonar[센서수] = { 
  NewPing(trigPin1, echoPin1, 최대제한거리1), 
  NewPing(trigPin2, echoPin2, 최대제한거리2), 
    ...
};
  • 다수의 초음파센서 접근 :
  • sonar[0].ping_cm() : 0번째 sonar에서 측정된 거리를 'cm'로 계산된 값을 출력한다.

그외 함수는 newPing 라이브러리가 링크된 아두이노 공식 사이트에 가시면 함수들에 대해 자세히 설명되어 있으니깐 가셔서 한번 읽어 주시기 바랍니다.

[소스] : NewPingExample 소스(출처: newPing 라이브러리 예제)

#include <NewPing.h>

//sonar(TrigPin, EchoPin, MaxDistance);
NewPing sonar(2, 3, 200);

void setup() {
  Serial.begin(9600);
}

void loop() {
  delay(50);          
  Serial.print("Ping : ");
  Serial.print(sonar.ping_cm());
  Serial.println("cm");
}

sonar.ping_cm() 함수를 통해서 초음파 센서의 거리를 'cm'로 출력된 값을 시리얼모니터로 출력하는 코딩입니다. 딱 한줄입니다. sonar.ping_cm() 함수 이 한줄의 명령을 실험하는 내용입니다. 그걸 시리얼모니터에 출력하기 위해서 3줄의 시리얼 출력문을 코딩했을 뿐 실제 초음파센서를 제어하는 명령은 딱 한줄입니다.

void loop() {
 delay(50);          
 sonar.ping_cm();
}

이렇게 0.05초 간격으로 초음파센서는 거리측정 값을 'cm'을 반환합니다. 어렵지 않죠.

라이브러리를 이용하면 이 함수 한개로 복잡하게 코딩을 생각하지 않고 거리를 'cm'로 만들 수 있지만 직접 거리를 계산하는 공식 코딩은 단순하기 때문에 구지 라이브러리를 사용 안해도 됩니다.

그런데, 왜! 라이브러리를 사용하는지 궁금하실 꺼에요. 거리 측정하는 거리 공식도 별로 어렵지 않은데 그냥 코딩하면 되지 라이브러리를 사용할 필요가 있냐고 생각하실 꺼에요. 그 이유는 초음파 센서를 한개 사용할 때는 상관 없는데 다중 초음파센서를 사용할 때 newPing 라이브러리 사용하면 효율적으로 코딩을 할 수 있습니다. 표현도 배열로 간단히 하나의 묶음으로 표현 할 수 있고, 여러개를 측정하려면 시간 관련한 문제도 고려해서 코딩해야 하는데 라이브러리를 사용하면 좀 더 정교하게 코딩이 가능하기 때문에 사용합니다. 위에 링크 된 아두이노 공식 홈페이지에서 소개하는 newPing 라이브러리 관련 내용을 보시면 15개 초음파센서를 한번에 제어하는 예제가 있는데 가셔서 살펴 봐주세요. 물론 라이브러리를 설치하면 아두이노 IDE에 예제로 나와 있어 설치하고 나서 예제를 열어보시고 어떻게 코딩되어 있는지 살펴보셔도 됩니다.

3. 결과


4. 2개 초음파 센서 사용


이제 2개의 초음파를 한번에 측정하여 그 결과를 출력해 보는 실험을 해보겠습니다.

1) 2개 초음파 센서 회로도


  • 준비물 : 초음파센서 2개, 아두이노우노
  • 내용 : 왼쪽 초음파센서는 tragPin 2, echoPin 3 에 연결하고, 오른쪽 초음파센서는 tragPin 4, echoPin 5 에 연결하시오.


2) 코딩


배열로 초음파센서 객체를 선언합니다.

NewPing sonar[2] = { 
  NewPing(2, 3, 200), 
  NewPing(4, 5, 200), 
};

이렇게 선언하시면 초음파센서 측정은 sonar[0].ping_cm(), sonar[1].ping_cm() 함수로 해서 2개의 초음파 센서의 거리를 측정하여 'cm'로 출력하게 됩니다. 초음파 센서들 간의 시간 딜레이는 0.05 초로 간격을 두어 측정하게 됩니다. 너무 빠르게 두개의 초음파센서의 값이 시리얼모니터로 출력되기 때문에 딜레이를 loop()함수 안에 마지막 라인에 0.5초의 딜레이를 줌으로서 좀 천천히 2개의 초음파센서 값이 시리얼모니터로 출력되게 코딩했네요.

코딩은 따로 설명할 필요 없이 방금 앞에서 코딩한 소스에서 한번 더 초음파센서 sonar[위치].ping_cm()함수로 출력하는 명령만 추가한 것 뿐이니 구지 설명하지 않겠습니다.

[소스]

#include <NewPing.h>

//sonar(TrigPin, EchoPin, MaxDistance);
NewPing sonar[2] = { 
  NewPing(2, 3, 200), 
  NewPing(4, 5, 200), 
};

void setup() {
  Serial.begin(9600);
}

void loop() {
  delay(50);          
  Serial.print("A Ping : ");
  Serial.print(sonar[0].ping_cm());
  Serial.println("cm");
  
  delay(50);          
  Serial.print("B Ping : ");
  Serial.print(sonar[1].ping_cm());
  Serial.println("cm");

  delay(500);
}

3) 결과



위 사진을 보시면 A초음파센서와 B초음파센서로 나뉩니다. 여기서, B초음파센서는 Servo Motor에 테이프로 감겨 있고 Servo Motor 같이 아두이노 RC카에 테이프로 부착되어 있어서 어쩔 수 없이 RC카에 부착된 B초음파센서랑 A초음파센서를 실험하다 보니깐 보시는 것처럼 좀 불편하게 실험 되었습니다. 감안하시고 동영상을 보시기 바랍니다.


마무리


오늘 post는 초음파센서를 직접 코딩하는 방법도 있지만 이렇게 라이브러리를 이용하여 쉽게 코딩할 수 있는 것을 보여드리기 위해서 다뤘습니다. 그리고, 왜! 갑자기 초음파센서를 이 시점에 다시 post를 했냐면 아두이노 RC카에서 거리측정을 통해 장애물을 감지하는데 사용하기 위해서 사전 학습으로 거론하게 되었네요. 직접적으로, 측정 로직을 코딩하는 것도 좋지만 새로운 것을 소개하는 것이 좋을 것 같아서 초음파센서에 대한 post를 하면서 newPing에 대해 이야기 하면 좋을 것 같아 이렇게 이야기를 하게 되었네요.

오늘 이야기한 post를 보기전 사전학습으로 직접 거리를 측정하는 방법에 대한 링크된 post 글을 찾아가셔서 복습을 한 뒤에 newPing을 사용해 보셨으면 합니다.


댓글()

[아두이노] RFID-RC522+Bluetooth+초음파 센서 실험

IOT/아두이노|2019. 5. 8. 09:00

[아두이노] RFID-RC522+Bluetooth+초음파 센서 실험



지난 시간에 RFID-RC522 + Servo Motor를 제어하는 실험을 하였습니다. 오늘은 몇가지 상황을 정하고 그 상황에 맞게 아두이노를 제어하는 실험을 하고자 합니다.

첫번째, 실험 내용은 RFID-RC522는 카드를 읽는 동작만 수행하는 아두이노와 Servo Motor를 회전 시키는 아두이노로 나누고 싶은 때가 있을 수 있습니다. 역할 분담으로 설계를 하고 싶을 때 그 문제를 해결 하기 위해서 두 아두이노 사이의 통신을 통해서 메세지를 주고 받으면 됩니다. 통신 중의 무선 통신 모듈인 Bluetooth 통신을 접목하여 실험을 하고 싶었습니다. 실제 실험의 내용은 Card가 저장된 UID랑 일치하면 Bluetooth를 통해 스마트폰에 메세지를 전송하는 과정을 실험 하였습니다. 이렇게 메세지를 전송할 수 있다면 다른 아두이노가 있으면 그 아두이노가 블루투스로 메세지를 수신하고 그에 따른 회전 명령을 수행하면 간단히 역할을 나눠서 동작할 수 있게 됩니다. 실제로 역할 분담 실험을 하기에는 부품이 부족하여 아쉽게 실험을 할 수 없고 해서 무선 통신으로 스마트폰에 메세지를 전송하는 데 까지만 실험을 해도 충분히 실험의 목적을 달성 할 수 있기 때문에 이정선에서 실험을 하기로 결정 했습니다.

두번째, 실험 내용은 RFID-RC522 리더기로 Card를 읽고 Servo Motor가 회전 되었을 때 다시 원위치로 되돌아 가게 하는 방법을 실험하고자 합니다. 실험에 쓰인 부품은 초음파센서 입니다. Servo Motor를 출입문이라고 가정하고 Card가 인식되면 180(Open)도 회전 후 사람이 출입문을 지나가고 나면 출입문을 통과 된 상황을 설정하면 자동으로 Servo Motor가 다시 0(Close)도 회전 되어 문이 닫히게 하면 좋을 것 같아서 상상해 보았습니다. 그 역할을 초음파센서를 이용할 예정입니다. 상상을 더하면 초음파센서가 인간이 지나기 전에 가지고 있는 거리측정값에서 인간이 지나가면 초음파센서의 거리측정값이 작아집니다. 인간를 감지한 값이 됩니다. 이때 초음파 센서값을 작아졌을 때 Servo Motor를 0(Close)도 회전 시켜서 문이 닫힌다는 설정입니다. 초음파센서의 위치는 안전위치에 문이 닫혀도 되는 위치에 설치 해야 겠지요.

1. RFID-RC522의 Bluetooth 통신



실험은 RFID-RC522 리더기로 Card를 인식하면 그 인식한 값을 Bluetooth를 이용하여 스마트폰에 전송하는 실험을 하겠습니다. 본 실험의 목적은 RFID-RC522 모듈을 사용하면서 이 모듈을 통해서 얻은 데이터를 외부 다른 기기로 전송하기 위해서 입니다. 지금 하고자 하는 실험은 Bluetooth 통신으로 외부로 기기(스마트폰)으로 RFID-RC522 리더기의 결과를 보낼 수 있다면 나중에 아두이노 두대로 나눠서 Bluetooth 통신으로 하나는 RFID-RC522 리더기 제어하고 하나는 Servo Motor제어를 하게 할 수 있게 됩니다.


1) RFID-RC522 + ServoMotor+피에조부저+Bluetooth 회로도



  • 준비물 : RFID-RC522, Servo Motor, 피에조부저, Bluetooth, 아두이노우노
  • 내용 : SPI 통신을 할 수 있게 핀은 연결하고 Servo Pin 7번, 피에조부저 6번으로 연결해 보자. 2,3번 핀을 Bluetooth핀으로 사용.
  • 지난시간 회로도 참고 : [아두이노] RFID-RC522 제어

  • BlueTX - arduinoRx - 2번
  • BlueRX - arduinoTx - 3번

출처 : Fritzing

지난 시간의 회로도에서 Bluetooth 모듈이 추가로 더 연결된 회로도 입니다. 2,3번 핀만 Bluetooth로 추가로 연결하시면 됩니다.

2) 코딩



MFRC522

#include <SPI.h>
#include <MFRC522.h>
  • MFRC522 mfrc522(SS_PIN, RST_PIN) : MFRC522 인스턴스화
  • SPI.begin() :SPI bus 초기화
  • mfrc522.PCD_Init() : MFRC522 card 초기화
  • mfrc522.PICC_IsNewCardPresent() : 새카드 확인
  • frc522.PICC_ReadCardSerial() : 하나의 카드읽기 확인
  • rfid.uid.uidByte[] : 읽은 카드 키값이 들어 있음

피에조 부저

  • tone(tonePin ,음,음길이) : 음 시작
  • noTone(tonePin ) : 음 중지

Servo Motor

#include <Servo.h>
  • Servo servo : 서보모터 객체 선언
  • servo.attach(서보핀) : 서보 모터에 출력을 담당할 핀 선언
  • servo.write(회전각) : 회전각 만큰 서보모터를 회전 시킴

시리얼 통신

  • Serial.begin(9600) : 시리얼 통신 시작(9600 통신속도)
  • Serial.println(값) : 시리얼모니터 출력
  • Serial.available() : 시리얼통신으로 데이터가 들어놨는지 상태 확인
  • Serial.parseInt() : Int형으로 데이터를 읽음

Bluetooth(SoftwareSerial 통신)

#include <SoftwareSerial.h>

SoftwareSerial mySerial (rx, tx) : 소프트시리얼 객체선언(rx(수신), tx(전송))
mySerial.begin(9600) : 시리얼 통신 시작(예로 9600 통식속도를 사용해 봤네요.)
mySerial.println(값) : 데이터 전송


지난 시간 소스에서 Bluetooth를 다음과 SfotwareSerial 명령들을 추가하면 됩니다. 간단히 Serial 부분을 SoftwareSerial 형태로 변경만 해주시면 됩니다.

SoftwareSerial mySerial (rx, tx) : 소프트시리얼 객체선언(rx(수신), tx(전송))

이렇게 통신객체변수 mySerial로 선언을 해주면 다음과 같이 표현만 해주시면 됩니다.

Serial.begint(9600) => mySerial.begin(9600)
Serial.println("Open") => mySerial.println("Open")
Serial.println("Close") => mySerial.println("Close")

이렇게 SoftwareSerial 통신을 하면 됩니다.

Bluetooth 부분을 추가하여 수정 하면 다음과 같습니다.

[소스]

#include <SPI.h>
#include <MFRC522.h>
#include <Servo.h>
#include <SoftwareSerial.h>

const int RST_PIN = 9;
const int SS_PIN = 10;

MFRC522 mfrc522(SS_PIN, RST_PIN);   // MFRC522 인스턴스

byte cardkeyByte[4] = {0x55, 0xAF, 0x07, 0x88}; //card UID 
boolean state = false; //Servo Motor 상태값

Servo servo;
const int SERVO_PIN = 7;
const int TONEPIN = 6;

const int rxPin = 2;
const int txPin = 3;
SoftwareSerial mySerial(rxPin, txPin); // RX, TX

void setup() {
  Serial.begin(9600);  
  while (!Serial);  
  mySerial.begin(9600);     
  SPI.begin();         //SPI 시작
  mfrc522.PCD_Init();  //MFRC522 card 초기화
  Serial.println(F("Warning: this example clears your mifare UID, use with care!"));

  servo.attach(SERVO_PIN);
  servo.write(0);
  delay(50);
}

void loop() {
  // 새 카드 확인
  if ( ! mfrc522.PICC_IsNewCardPresent()) return; 

  // 카드 읽기
  if ( ! mfrc522.PICC_ReadCardSerial()) return;

  //카드 확인 메세지 음
  tone(TONEPIN ,523,1000/8);     // 도음으로 8분음표(음길이)
  delay(1000/4*1.30);             
  noTone(TONEPIN); 

  //읽은 Card UID와 등록된 Card UID가 일치하는 확인
  if (mfrc522.uid.uidByte[0] == cardkeyByte[0] && mfrc522.uid.uidByte[1] == cardkeyByte[1] &&
        mfrc522.uid.uidByte[2] == cardkeyByte[2] && mfrc522.uid.uidByte[3] == cardkeyByte[3] ){
   
         state=!state;    
         if(state == true){
          Serial.println("Open");
          mySerial.println("Open");
          servo.write(180);
          delay(1000);
   }
   else{          
          Serial.println("Close");
          mySerial.println("Close");
          servo.write(0);
          delay(1000);
         }
         delay(2000);
   }  
}

2) 결과


아두이노 IDE 시리얼모니터로 "Open" or "Close" 메세지 출력


실제 블루투스로 스마트폰에 깔리 블루투스 앱에 "Open" or "Close" 메세지 출력


작동 동영상 결과는 다음과 같습니다.


2. RFID-RC522 + 초음파 센서



RFID-RC522 모듈로 출입문이 열리고 닫히는 동작을 한다고 상상을 해보세요. 이때 출입문에 RFID-RC522 Card를 대면 Servo Motor를 180도 회전 시켜서 "Open" 상태가 되고 출입문를 지나가면 자동으로 Servo Motor가 0도로 회전 시켜서 "Close" 상태를 만든 다면 좀 더 그럴싸 해지겠죠. 이 표현을 하기 위해서 여러 Sensor 중 초음파 Sensor를 사용하여 그 느낌을 표현 하고자 합니다. 즉, 출입문을 지나고 출입문이 닫혀도 되는 안전지점에 초음파 Sensor를 배치하고 인간 감지를 통해 출입문을 자동으로 닫히게 한다는 설정으로 상상을 해 보았습니다. 물론 이 경우는 상황 조건 변수들을 다 고려한다면 좀 복잡해지지만 최대한 단순하게 의미만 전달하는 실험을 하는게 목적임으로 단순하게 접근하고 단순한 동작만 수행되도록 실험 하겠습니다.
실제로 모형을 만들어서 실험을 하면 좋은데 손재주가 없어서 못 만들었네요. 대충 그 의미만 전달하는 실험으로 Card를 RFID-RC522모듈에 대면 Servo Motor가 180도 회전을 하고 초음파 Sensor가 측정한 거리값을 일정 수치 이하면 인간을 감지한 걸로 판정하고 Servo Motor를 0도로 회전시키는 실험으로 그 느낌을 대신 전달하고자 합니다.


1) RFID-RC522 + 초음파 센서 회로도



부품이 하나씩 늘어날 때마다 회로도가 지져분 해지네요. 처음에는 초음파센서 두개로 연결해서 상황을 하나 더 만들려고 했는데 엄청 지져분 해져서 한개의 초음파 센서로 단순하게 초음파센서로 읽은 거리값으로 동작하게 표현하여 최대한 코딩량을 줄였네요.


2) 코딩


  • 내용 : RFID-RC522 리더기로 읽은 Card가 인식되면 Servo Motor를 180도 회전 시키고 초음파 센서로 일정거리값이하면 Servo Motor를 0도로 회전 시킨다.(거리값=10cm 실험)

위 소스를 약간만 변경하겠습니다.

  //읽은 Card UID와 등록된 Card UID가 일치하는 확인
  if (mfrc522.uid.uidByte[0] == cardkeyByte[0] && mfrc522.uid.uidByte[1] == cardkeyByte[1] &&
        mfrc522.uid.uidByte[2] == cardkeyByte[2] && mfrc522.uid.uidByte[3] == cardkeyByte[3] ){
   
         state=!state;    
         if(state == true){
          Serial.println("Open");
          mySerial.println("Open");
          servo.write(180);
          delay(1000);
   }
   else{          
          Serial.println("Close");
          mySerial.println("Close");
          servo.write(0);
          delay(1000);
         }
         delay(2000);
   }  

위 소스에서 필요한 동작은 Card가 일치하면 문만 열기게 하면 되니깐 else 이하문은 필요 없습니다. 이 부분은 초음파센서 코딩으로 넘기게 됩니다.

<
  if (mfrc522.uid.uidByte[0] == cardkeyByte[0] && mfrc522.uid.uidByte[1] == cardkeyByte[1] &&
        mfrc522.uid.uidByte[2] == cardkeyByte[2] && mfrc522.uid.uidByte[3] == cardkeyByte[3] ){
   
         state=true;
                 
         Serial.println("Open");
         mySerial.println("Open");
         servo.write(180);
         delay(1000);
    }

이렇게 해서 Card가 읽치하면 무조건 Servo Motor는 180도로 향하게 됩니다. 여기서 state 상태변수를 그냥 남겨둿는데 이것은 초음파센서 진입 변수로 재활용 할 예정입니다. 즉, Card를 대고 문이 열렸을 때만 초음파센서를 작동시킨다고 보시면 됩니다.

초음파 센서핀은 Trig, Echo핀이 있는데 Trig은 초음파를 쏘는 핀이고 Echo은 초음파를 읽는 핀입니다.

const int TRIG_PIN = 4;
const int ECHO_PIN = 5;

남는 핀중에 4,5번핀을 그냥 선택했습니다.

void setup(){
  pinMode(TRIG_PIN,OUTPUT); //초음파센서핀(TRIG)
  pinMode(ECHO_PIN,INPUT); //초음파센서핀(ECHO)
}

그리고 Trig(OUTPUT), Echo(INPUT)핀을 어떤 모드로 사용할 것인지 선언해야 합니다.

if(state == true){   
     float distance = UltrasonicDistance();
     if(distance<10){
          state=false;
          Serial.print("Close : "); 
          Serial.println(distance);          
          mySerial.println("Close");
          servo.write(0);
          delay(500);
      }
}   

state로 Card가 일치하면 문이 열리잖아요 그때 state가 true가 되니깐 초음파센서는 그 때부터서 초음파 센서가 동작해야 하기 때문에 이렇게 if문으로 "state==true"일 때 UltrasonicDistance()함수로 초음파 센서를 측정하겠다는 로직입니다. UltrasonicDistance()함수는 사용자정의함수로 직접 만든함수명입니다.

float UltrasonicDistance(){  
  digitalWrite(TRIG_PIN, LOW); 
  delayMicroseconds(2); 
  digitalWrite(TRIG_PIN,HIGH); 
  delayMicroseconds(10); 
  digitalWrite(TRIG_PIN,LOW); 

  float duration = pulseIn(ECHO_PIN, HIGH);  
  return duration / 57.5;  
}

초음파 측정 로직인데 이 로직은 기본 아두이노홈페이지에 가시면 측정하는 코딩 로직을 예제로 소개하고 있습니다. 그 부분을 묶어서 캡슐화 해서 사용자정의 함수로 분리해 냈습니다. 이 코딩을 loop()안에다가 전부 코딩하면 오히려 가독성이 떨어지기 때문에 사용자정의함수로 분리를 한 것이죠.

     if(distance<10){
           거리가 10cm이하면 참;
             state = false;
             servo.write(0);
             delay(500);
     }

거리가 10cm이하면 문이 닫힌다는 설정문입니다. 그러면 문이 닫히면 더이상 초음파센서 측정이 필요 없으니깐 state=false로 바꾸어 주면 다시 문이 열리기 전까지는 초음파 측정을 할 필요가 없겠죠. state가 초음파센서 작동 진입 락이라고 생각하시면 됩니다.

초음파센서 로직의 대한 코딩 배치를 하면 종합 코딩은 다음과 같습니다. 새카드확인과 카드읽기 전에 초음파센서를 동작시킬건지 말건지를 먼저 수행되도록 배치 했습니다. 그 이유는 새카드확인과 카드읽기가 만족하지 않으면 거기서 return 되기 때문에 새카드확인과 카드읽기 문장 아래에 배치하면 카드를 대기 전까지 초음파센서는 측정하지 못하게 됩니다. 그래서 먼저 배치 한 것이죠. 그리고, state 상태변수로 초음파센서를 작동 상태값으로 초음파센서를 제어하게 됩니다.

[소스]

#include <SPI.h>
#include <MFRC522.h>
#include <Servo.h>
#include <SoftwareSerial.h>

const int RST_PIN = 9;
const int SS_PIN = 10;

MFRC522 mfrc522(SS_PIN, RST_PIN);   // MFRC522 인스턴스

byte cardkeyByte[4] = {0x55, 0xAF, 0x07, 0x88}; //card UID 
boolean state = false; //초음파 센서 작동 상태값

Servo servo;
const int SERVO_PIN = 7;
const int TONEPIN = 6;

const int rxPin = 2;
const int txPin = 3;
SoftwareSerial mySerial(rxPin, txPin); // RX, TX

const int TRIG_PIN = 4;
const int ECHO_PIN = 5;


void setup() {
  Serial.begin(9600);  
  while (!Serial);  
  mySerial.begin(9600);     
  SPI.begin();         //SPI 시작
  mfrc522.PCD_Init();  //MFRC522 card 초기화
  Serial.println(F("Warning: this example clears your mifare UID, use with care!"));

  pinMode(TRIG_PIN,OUTPUT); //초음파센서핀(TRIG)
  pinMode(ECHO_PIN,INPUT); //초음파센서핀(ECHO)

  servo.attach(SERVO_PIN);
  servo.write(0);
  delay(50);
}

void loop() {

  if(state == true){   
     float distance = UltrasonicDistance();
     if(distance<10){
          state=false;
          Serial.print("Close : "); 
          Serial.println(distance);          
          mySerial.println("Close");
          servo.write(0);
          delay(500);
      }
   }    
  // 새 카드 확인
  if ( ! mfrc522.PICC_IsNewCardPresent()) return; 

  // 카드 읽기
  if ( ! mfrc522.PICC_ReadCardSerial()) return;

  //카드 확인 메세지 음
  tone(TONEPIN ,523,1000/8);     // 도음으로 8분음표(음길이)
  delay(1000/4*1.30);             
  noTone(TONEPIN); 

  //읽은 Card UID와 등록된 Card UID가 일치하는 확인
  if (mfrc522.uid.uidByte[0] == cardkeyByte[0] && mfrc522.uid.uidByte[1] == cardkeyByte[1] &&
        mfrc522.uid.uidByte[2] == cardkeyByte[2] && mfrc522.uid.uidByte[3] == cardkeyByte[3] ){
   
          state = true;    
          Serial.println("Open");
          mySerial.println("Open");
          servo.write(180);
          delay(500);
   }  
}
float UltrasonicDistance(){  
  digitalWrite(TRIG_PIN, LOW); 
  delayMicroseconds(2); 
  digitalWrite(TRIG_PIN,HIGH); 
  delayMicroseconds(10); 
  digitalWrite(TRIG_PIN,LOW); 
    
  float duration = pulseIn(ECHO_PIN, HIGH);  
  return duration / 57.5;  
}

3) 결과


아두이노 IDE 시리얼모니터로 "Open" or "Close" 메세지 출력과 함께 초음파센서가 측정된 거리(Cm)을 동시에 출력 합니다.



스마트폰에는 이전 소스와 동일하게 "Open" or "Close" 메세지 출력 합니다.


동작 동영상은 다음과 같습니다.


마무리


RFID-RC522 모듈에 부품이 하나씩 늘어나면서 코딩량이 좀 많이 늘어 났습니다. 만약, 처음부터 이렇게 회도도를 만들고 코딩량이 길었다면 아마도 RFID-RC522 모듈에 대해 이해하기가 힘들었을 꺼에요. 그리고, 이전 post를 읽지 않는다면 오늘 post가 어려울 수도 있으니깐 꼭 읽고 이 post를 보셨으면 합니다.

최근의 post를 계속 중복된 실험이 이루어지고 있는데 그 중복되 실험 의미를 잘 이해하시고 따라오셔야 합니다. 대개 개별적인 부품 실험은 쉽게 이해하시는데 2개 이상의 부품이 결합하면 어떻게 코딩해야 할지 이해하지 못하는 경우가 많습니다. 어디에 어느 명령 코딩을 삽입해야 하는지를요. RFID-RC522 모듈을 이렇게 작동합니다. 하고 끝내면 사실 이 모듈로 상상을 하더라도 다른 부품과 연결 하기는 초보분들은 쉽지 않습니다. 여러개의 부품을 연결하면 코딩에 멘붕이 발생하기도 합니다. 제가 실험한 과정을 잘 보시고 어떤 과정으로 회로도를 만들고 코딩을 했는지 이해하셨으면 합니다.

RFID-RC522 부품을 하나에서 출발해서 여기까지 왔습니다. 부족한 부분이 많고 추가해야 할 부품은 많지만 상상의 상상을 더하면 위 회로도가 아닌 여러분만의 회로도를 만들 수 있으니깐 RFID-RC522 모듈 하나에서 다시 처음부터 여러분들이 회로도를 만들고 상황을 설정하고 그 상황의 회로도를 만들고 그 상황의 코딩을 한번 해보셨으면 합니다.


댓글()

[아두이노] 초음파줄자 응용

IOT/아두이노|2019. 2. 9. 12:46

[아두이노] 초음파줄자 응용




초음파센서로 줄자를 만들려면 대충 이런식으로 A, B의 벽까지의 거리를 측정하면 쉽게 줄자가 만들어 질 수 있겠죠.
이걸 표현하기 위해서 실험을 하고자 합니다.

1. 회로도 구성


  • 준비물 : 초음파센서3핀 2개, 스위치버턴 1개, 아두이노우노, 뻥판
  • 내용 : 벽과 벽사이의 거리를 측정하는 줄자를 구현해보자.

스위치를 누르면 아두이노우노 본체를 기준으로 양쪽 두지점의 벽과 벽사이 거리를 측정하도록 하기 위해서 회로도를 우선 아두이노우노 기준으로 양쪽 방향으로 초음파센서를 배치하여 회로도를 구성하였습니다.


2. 코딩


  • 거리계산 : ((float)(340 * 초음파거리시간값) / 10000) / 2;
  • 두지점거리계산식 : 아두이노우노를 10cm로 가정할경우
    total=v1+v2+10; => v1(A초음파), v2(B초음파), 10(아두이노우노본체크기)
  • 내용 : 스위치를 누르면 A,B 초음파 거리를 측정하고 그 결과를 시리얼모니터에 출력한다.

우선 스위치버턴은 복습차원으로 내부풀업저항을 이용합니다. 그래서 pinMode은 INPUT_PULLUP으로 선언합니다. 그리고 스위치 버턴값을 읽기 위해서 digitalRead(핀번호) 함수를 사용합니다. 지난 스위치버턴 포스팅에서 이미 소개했으며 복습차원으로 스위치 버턴을 사용하였습니다.

void setup() {
  Serial.begin(9600);
  pinMode(5,INPUT_PULLUP);
}
void loop() {  
  if(digitalRead(5)==0){
    float v1=UltrasonicDistance(6);
    float v2=UltrasonicDistance(7);
    float total=v1+v2+10;
    Serial.println(total);
    delay(500);
  }  
}

float UltrasonicDistance(int m_pin){
  pinMode(m_pin,OUTPUT); 
  digitalWrite(m_pin, LOW); 
  delayMicroseconds(2); 
  digitalWrite(m_pin,HIGH); 
  delayMicroseconds(10); 
  digitalWrite(m_pin,LOW); 
  
  pinMode(m_pin,INPUT);    
  float duration = pulseIn(m_pin, HIGH);  
  return duration / 57.5;  
}

여기서 2개의 초음파 거리측정을 해야하는데 그러면 두번의 중복 코딩이 발생합니다. 지난시간에 배웠던 C언어문법 외부함수로 재정의하여 뺐습니다.

복습하자면

float 초음파거리(int A){
 return 거리식;
}

초음파거리함수에 인자는 핀번호입니다. 함수 앞에 float는 변수 선언에서 설명한 자료형입니다. 즉, 함수 앞에서 자료형이 표현되었다는 것은 return의 명령어로 자료형(float)으로 반환한다는 의미입니다. 여기서는 좀 더 정확한 거리계산을 위해서 실수형으로 거리 계산된 값을 반환하겠다는 의미인거죠. 만약 정수형(int, long)으로 반환하겠다면 앞에 정수자료형을 선언하시면 됩니다.

loop()함수에서 사용할때는

<
v1=초음파거리(6)

이렇게 하면 6번핀의 초음파센서가 거리계산을 한뒤에 그 값을 반환하여 v1에 저장하게 됩니다.
v1 6번핀에 연결된 초음파센서 거리값이 저장됩니다.

초음파거리 계산식을 외부함수로 재정의함으로써 중복코딩을 줄이게 됩니다.
loop()안에는 아두이노 전원이 공급되고 반복되는 작업 명령들이 수행됩니다. 가독성을 위해서는 될 수 있으면 loop()함수에 선언되는 코딩들은 최소화 해야합니다. 그래야 가독성이 좋고 나중에 수정하기도 편합니다.

코딩 순서는

  1. 스위치버턴을 누르면 거리를 계산한다.
    pinMode(5,INPUT_PULLUP); //선언
    if(digitalRead(5){ //동작
    거리계산;
    }
  2. A, B초음파 거리 계산측정한다.
    float v1=UltrasonicDistance(6); //A 초음파거리계산
    float v2=UltrasonicDistance(7); //B 초음파거리계산
  3. 최종거리 계산한다.
    float total=v1+v2+10;
  4. 시리얼모니터에 그 결과를 출력한다.
    Serial.begin(9600); //선언
    Serial.println(total); //출력

3. 결과



마무리


코딩은 우선 어떤 명령을 내릴지 한글로 메모장에다가 순서를 정하여 글로 써보세요. 그리고 그 명령에 대해 사용할 함수들은 각 부품을 다룰때 쓰던 함수들을 그대로 사용하시면 됩니다. 어렵게 생각하실 필요없이 각 부품을 소개할때 거기에 사용한 함수들 2~3개를 기억했다가 그 함수의 의미를 이해하고 그것을 응용해서 표현하시면 됩니다.

정교한 초음파센서를 이용해서 건축현장에서 건물안에 길이를 측정할 때 유용하겠죠.

또 초음파로 어떤것을 표현할 수 있을까요. 상상의 나래를 펼쳐 보세요.


댓글()

[아두이노] 거리경보장치 응용

IOT/아두이노|2019. 2. 7. 18:50

[아두이노] 거리경보장치 응용



예전에 실험한 내용인데 초음파 응용편으로 소개할까 합니다. 거리경보장치는 실생활에 가장 유사한것이 자동차 후진 주차할때 경보장치를 연상하시면 될꺼에요. 뒤에 장애물과의 거리가 위험할때 나는 경보음을 생각하시면 아마 이해가 빠를꺼에요.

1. 회로도 구성


  • 준비물 : 초음파센서3핀 1개, led 2개, 저항 220옴 2개, 피에조부저 1개, 아두이노우노, 뻥판
  • 내용 : 장애물과의 거리가 50cm미만일때 경보음과 Red Led에 불이 들어오고 위험을 알리고, 50cm이상일때 Green Led에 불이 들어오고 안전상태를 표현합니다.


2. 코딩


  • Led : 선언-pinMode(핀번호, OUTPUT) 제어-digitalWrite(핀번호,상태값); 로 상태값 1(5V) or 0(0V)

  • 피에조부조 : 제어-tone(출력핀,음계,음길이), noTone(출력핀)으로 음과 음사이를 끊어줌

  • 초음파센서 : 선언pinMode(핀번호, 입/출력모드), delayMicroseconds(시간값)으로 마이크로초로 잡게 딜레이 시킴, pulseIn(7, HIGH)로 초음파가 장애물에 부딪치고 되돌아온 거리시간값을 입력받음

  • 거리계산 : ((float)(340 * 초음파거리시간값) / 10000) / 2;


코딩 설계는

  1. 초음파센서 거리 측정한다.
  2. Led 2개로 안전/위험 상태를 나타낸다.
  3. 피에조부조에서 위험거리일때 경보음이 울리게 한다.

1번 코딩 :
지난시간의 초음파 거리측정 코딩을 그대로 적용한다. 하지만 안전/위험 상태를 기준을 50cm로 설정한다면 어떻게 코딩해야할까요. 지난시간에 배웠던 문법 if문 조건이 참/거짓으로 나뉘면 쉽겠죠.

  • 거리측정은 7번핀에서 pulseIn(7, HIGH)로 거리시간값을 ((float)(340 * 초음파거리시간값) / 10000) / 2 로 거리가 구함
  • if(거리<50) {처리문1; } else {처리문2;}

2번 코딩 :
led 2개로 led은 위험, green은 안전으로 1번 코딩에서 50cm미만일때 red led 켜고, 50cm이상일때 green led 켜면 되겠죠.

if(거리<50){
    digitalWrite(11, HIGH);  
    digitalWrite(10, LOW);  
}
else
{
   digitalWrite(11, LOW);  
   digitalWrite(10, HIGH);  
}

참쉽죠

3번 코딩 :
경보음은 피에조부저에서 tone(), noTone()함수를 어떤 음계로 음의길이를 어느정도 할지는 자유입니다. 그런데 어디에 코딩할까. 50cm이하 일때 경보음을 울려야 겠죠.

if(거리<50){
    tone(12,523,1000/8);     // 도음으로 8분음표(음길이)
    delay(1000/4*1.30);             
    noTone(12);            
}
else
{
}

이렇게 해서 코딩은 간단히 해결되었습니다. 쪼개서 보면 별거 없습니다. 처음 기준이 되는 부품이 어떤 상태가 되면 다른 부품이 그 상태를 기준으로 어떻게 변화되는지만 글로 한번 설계해보시고 그걸 코딩으로 표현하시면 됩니다.

초음파센서로 거리가 50cm미만이면 위험상태(red led 켜고, 피에조부저 경보음)와 안전상태(green led 켜기)를 표현한 것 뿐이죠. 그런데 이걸 다 합쳐진 코딩을 보면 복잡해 보일 수 있습니다. 하지만 부품 한개 한개의 제어한 것들을 합치니깐 복잡해 보일뿐 부품을 개별적으로 생각하시면 아주 간단한 코딩입니다.

종합해서 코딩하면은

void setup() {  
  pinMode(11, OUTPUT);
  pinMode(10, OUTPUT);
}
void loop() {   
  pinMode(7,OUTPUT); //7번핀 출력모드로
  digitalWrite(7, LOW); 
  delayMicroseconds(2); 
  digitalWrite(7,HIGH); 
  delayMicroseconds(10); 
  digitalWrite(7,LOW); 
  
  pinMode(7,INPUT);    //7번핀 입력모드로
  float duration = pulseIn(7, HIGH);
  float distance = duration / 57.5;  
  

  if(distance < 50){    //50cm 미만 경보발동

    digitalWrite(11, HIGH);  
    digitalWrite(10, LOW);  

    tone(12,523,1000/8);     // 도음으로 8분음표(음길이)
    delay(1000/4*1.30);             
    noTone(12);            

  } else{                   //50cm 이상 안정거리
    digitalWrite(11, LOW);  
    digitalWrite(10, HIGH); 
  } 
}  

3. 결과



마무리


led, 피에조부저, 초음파센서를 각각 이전 시간에 배웠고 그걸 합쳐서 하나의 경보장치를 만들어 보았습니다.
또, 어떤것들이 있을까요 한번 상상의 나래를 펼쳐보세요.

초음파센서가 은근 재밌는 소재라 또다른 응용편을 다음에 소개 할께요.


댓글()

[아두이노] 초음파센서 제어

IOT/아두이노|2019. 2. 6. 11:01

[아두이노] 초음파센서 제어



오늘은 재밌는 소재로 거리를 측정할 수 있는 초음파센서를 사용하여 실험하는 내용을 다뤄 보겠습니다. 실제 초음파센서를 구매하시면 4핀으로 구성되어 있는데 가상시뮬레이터에서는 초음파센서가 3핀으로 되어서 어떻게 코딩해야하나 혼동 되실 수 있지만 원리는 동일하니깐 어렵게 생각하실 필요는 없습니다.

1. 초음파센서



초음파센서를 부품을 실제 구입하면 1200원정도 하는 초급 초음파센서를 구매하실수 있을꺼에요. 핀은 총 4핀으로 전원(+,-) 2핀, 입력핀, 출력핀으로 구성되어 있습니다. 하지만 가상시뮬레이터에서는 3핀으로 구성되어 있으면 입력/출력을 한핀에서 다 제어해야 합니다.

가상 시뮬레이터 코딩은 이 한핀을 어떻게 제어할지만 생각하시고 표현하시면 됩니다.

2. 초음파센서 계산 공식


  • 공식 : 기본 340 (위 1200원짜리 4핀 초음파센서 초음파속도입니다.)
    거리 = ((초음파속도 * 센서시간값) / 10000) / 2

            ((float)(340 * duration) / 10000) / 2;  
    

초음파속도 : 실제 사용하는 초음파센서 부품의 초음파속도입니다. 즉 초음파센서마다 초음파속도는 다르고 부품을 구매하실때 제공되는 정보를 잘 확인하시면 정교한 계산을 하실 수 있을꺼에요.

센서시간값 : 초음파센서에서 초음파가 나가고 앞에 장애물에 부딪치고 되돌아오는데 까지 걸리는 시간값입니다. 왕복시간값이라고 생각하시면 됩니다. 그래서 마지막에 나누기 2를 함으로써 초음파센서의 위치에서 장애물까지의 거리가 나오게 되는 것이죠.

3. 초음파센서 코딩

  digitalWrite(7, LOW); 
  delayMicroseconds(2); 
  digitalWrite(7,HIGH); 
  delayMicroseconds(10); 
  digitalWrite(7,LOW); 
   
  float duration = pulseIn(6, HIGH);
    
  float distance = ((float)(340 * duration) / 10000) / 2;  
    

7번핀이 출력모드이고 6번핀은 입력모드입니다. 7번핀으로 초음파를 쏘고 되돌아오는 초음파를 6번핀에서 읽게 됩니다. 그 값은 시간값이고 초음파공식에 대입하여 계산하게 됩니다.

  1. 초음파를 쏘기 전 초음파출력핀을 LOW(0)으로 한다. => 초기단계
  2. 딜레이 delayMicroseconds()함수는 시간을 마이크로초로 딜레이 시킬 때 사용. => 대기시간단계
  3. 초음파출력핀을 HIGH(5V)으로 한다. => 초음파를 출력 시작
  4. 딜레이 delayMicroseconds()함수로 대기한다. => 초음파를 쏘는 시간이다.
  5. 초음파출력핀을 LOW(5V)으로 한다. => 초음파 출력 중지

쉽게 말해서 초기상태는 초음파 출력핀 0V 상태로 2마이크로초로 초기상태로 뒀다가 7번핀을 통해 10마이크로초동안 초음파를 쏘고 난뒤에 초음파 출력핀 0V으로 10마이크로초동안만 초음파를 쏜 신호값을 거리계산에 사용한다는 점만 이해하시면 된다.

pulseIn(입력핀, HIGH)함수 : 펄스 신호의 길이를 잴 때 사용합니다. 초음파 되돌아 왔을때 HIGH->LOW가 되는 시점까지의 시간값을 반환하는 함수입니다. 좀 어려울 수 있습니다.
그냥 저 함수로 초음파 거리 시간값을 읽어오는 구나 정도만 처음에 이해하시면 됩니다.

정 모르겠다면 통으로 저 코딩을 외우시면 됩니다. 초음파센서를 사용할때 저 코딩으로 제어하는 구나 정도만 이해하시면 됩니다.

4. 회로도 구성


  • 준비물 : 초음파센서3핀 1개, 아두이노우노

5. 코딩


void setup() {
  Serial.begin(9600);
}
void loop() {   
  pinMode(7,OUTPUT); //출력모드  초음파 출력
  digitalWrite(7, LOW); 
  delayMicroseconds(2); 
  digitalWrite(7,HIGH); 
  delayMicroseconds(10); 
  digitalWrite(7,LOW); 
  
  pinMode(7,INPUT);    //입력모드로 초음파 입력
  float duration = pulseIn(7, HIGH); //초음파 거리 시간값 읽기
  float distance = duration / 57.5;  // ((float)(340 * duration) / 10000) / 2;   

  Serial.println(distance);   
} 

핀의 입력/출력모드 setup()함수에 선언된다고 했는데 여기서는 loop()함수에서 선언하였습니다. 왜 그렇게 했을까요. 그것은 바로 7번핀을 입력모드와 출력모드를 둘 다 사용해야 하기 때문에 계속 핀모드를 변경해야 합니다. 그래서 loop()함수에 선언된거죠.

초음파를 출력하기전에 7번핀을 출력모드로 선언했다가 다시 7번핀을 pulseIn()함수로 입력을 받을때에는 그 앞에 7번핀을 입력모드로 선언해야겠죠. 이런식으로 해서 7번핀으로 입력/출력모드 제어가 가능해 지는 것이죠.

 float distance = duration / 57.5;  // ((float)(340 * duration) / 10000) / 2;   

이식은 공식에서 최대한 줄이고 가상시뮬레이터에서 좀 더 거리가 비슷하게 나타내기 위해서 근사값 57.5로 표현했습니다. 실제로 하실때는 정식 공식을 사용하세요. 가상시뮬레이터에서는 정식 공식으로 대입하면 오차 거리가 좀 크게 나서 일부러 공식을 줄이고 줄인 공식에서 숫자를 앞뒤로 근사값들을 임의로 정해서 여러차례 실험한 뒤에 가장 오차가 적게 나오는 값이 57.5여서 이렇게 식을 만들었습니다.

실제로 하실때에는 정식 공식을 사용하시고 정식 공식을 써도 오차 거리가 발생할때에 그 부품에 맞게 근사값들을 잡아서 오차 거리를 줄이시면 아마 될꺼에요.

시리얼모니터 출력

지난시간에 사용했지만 복습차원으로 다시 설명하자면

아두이노 IDE 시리얼모니터를 사용하기 위해서

void setup()
{
 Serial.begin(9600);
}
void loop(){
Serial.println(distance);   
}

setup()함수에서 시리얼 통신을 시작한다고 선언(Serial.begin) 하고 loop()함수에서 시리얼모니터로 출력(Serial.println) 합니다.

Serial.println(출력값);   

이정도만 우선 알아두세요.

6. 결과

마무리


실제로 한다면 4핀 코딩을 해야하는데 아래와 같이 실험하시면 됩니다.

void setup() {
  Serial.begin(9600);
  pinMode(7,OUTPUT); //출력모드
  pinMode(6,INPUT);    //입력모드
}
void loop() {    
  digitalWrite(7, LOW); 
  delayMicroseconds(2); 
  digitalWrite(7,HIGH); 
  delayMicroseconds(10); 
  digitalWrite(7,LOW); 
   
  float duration = pulseIn(6, HIGH);
  float distance = duration / 57.5;  // ((float)(340 * duration) / 10000) / 2;  

  Serial.println(distance);   
}  

이 초음파센서 하나로 어떤곳에 사용하면 좋을까요 한번 상상의 나래를 펼쳐보세요. 초음파센서가 거리를 측정할 수 있는 재밌는 부품이여서 거리를 측정할 수 있으면 할 수 있는 것들이 참 많습니다. 한번 생각해 보세요.


댓글()